


# Material Estruturado



GERÊNCIA DE CURRÍCULO DA EDUCAÇÃO BÁSICA

QUINZENA



#### **MATEMÁTICA**

CALCULANDO ÁREAS DE FIGURAS PLANAS: DECOMPOSIÇÃO, RECONFIGURAÇÃO E EXPRESSÕES ALGÉBRICAS

| HABILIDADE(S)                                                                                                                                                                                                                                                                                                                  | EXPECTATIVA(S) DE<br>APRENDIZAGEM                                                                                                                                                                                                                      | DESCRITOR(ES) DO<br>PAEBES                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| (EM13MAT307)  Empregar diferentes métodos para a obtenção da medida da área de uma superfície (reconfigurações, aproximação por cortes etc.) e deduzir expressões de cálculo para aplicá-las em situações reais (como o remanejamento e a distribuição de plantações, entre outros), com ou sem apoio de tecnologias digitais. | <ul> <li>Resolver situações- problema envolvendo a área de superfícies planas em contextos diversos, utilizando a decomposição da superfície, a reconfiguração ou as expressões algébricas para o cálculo de áreas de polígonos e círculos.</li> </ul> | <b>D058_M</b> Utilizar área de figuras bidimensionais na resolução de problemas. |

#### Caro(a) Professor(a),

Informamos que, a partir da Quinzena 14, o Material Estruturado incluirá todo o conteúdo relativo a esta quinzena, de modo a não haver mais duas capas e sintetizar o conteúdo em um único volume. Esperamos, assim, que essa mudança facilite o seu trabalho, planejamento e sua organização em sala de aula.

# Contextualização

#### SUSTENTABILIDADE E O USO INTELIGENTE DE MATERIAIS

Imagine que você é parte de uma equipe arquitetos convidados projetar pequeno espaço convivência em uma praça pública de seu bairro. O desafio é criar um ambiente bonito, funcional sustentável, otimizando o uso de materiais como pisos, grama sintética, madeira reciclada e lajotas. Para isso, será essencial calcular com precisão as áreas das superfícies que serão cobertas por diferentes materiais.



Design: Getty Images Signature / Fonte: Canva

A matemática entra como aliada na sustentabilidade. Ao conhecer e aplicar corretamente as fórmulas para cálculo de áreas, é possível evitar desperdícios, reduzir custos e ainda tomar decisões mais conscientes em relação ao meio ambiente. A decomposição de superfícies e o uso de **expressões algébricas** ajudam a resolver esses desafios de forma eficiente, permitindo reaproveitar espaços e materiais.

Por exemplo, sua equipe decidiu construir um espaço com formato composto por um setor circular de 90° (um quarto de círculo), com raio de 2,5 metros, que será coberto com madeira de reflorestamento e um retângulo acoplado ao setor circular, onde uma das medidas do retângulo é igual ao raio do setor (2,5 metros), e a outra medida é 4 metros, esse retângulo será revestido com piso drenante ecológico. Para calcular a quantidade de cada material a ser utilizado, vocês precisarão saber exatamente a área de cada parte. Esse será o primeiro passo para estimar os custos e realizar a compra dos materiais de forma sustentável.

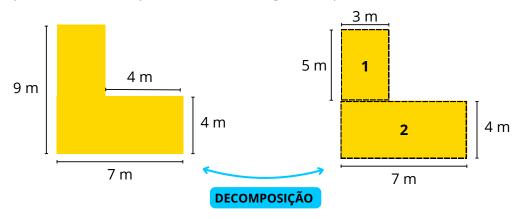
Neste material, iremos estudar o cálculo de áreas de figuras planas, como retângulos, polígonos e círculos, por meio de estratégias como a decomposição, reconfiguração de superfícies e uso de expressões algébricas, com o objetivo de resolver problemas que envolvam contextos diversos.

**BONS ESTUDOS!** 



No material anterior, estudamos as áreas de várias figuras planas. Neste material, iremos utilizar estes conhecimentos para resolver situações-problemas envolvendo a área de superfícies planas em contextos diversos, utilizando a decomposição da superfície, a reconfiguração ou as expressões algébricas. Para isso iremos relembrar as expressões algébricas (fórmulas) para os cálculos das áreas e entenderemos o que é decomposição e reconfiguração da superfície.

| ÁREA DE FIGURAS PLANAS  |                                                |                                               |
|-------------------------|------------------------------------------------|-----------------------------------------------|
| TRIÂNGULO               | $A=rac{b\cdot h}{2}$                          | b                                             |
| TRIÂNGULO<br>EQUILÁTERO | $A=rac{a^2\cdot\sqrt{3}}{4}$                  | $\frac{a}{2}$ $\frac{a}{2}$ $\frac{a}{2}$     |
| RETÂNGULO               | $A=b\cdot h$                                   | b                                             |
| QUADRADO                | $A=\ell^2$                                     | £                                             |
| TRAPÉZIO                | $A=rac{(B+b)\cdot h}{2}$                      | base maior (b)  Lado obliquio  base maior (B) |
| LOSANGO                 | $A=rac{D\cdot d}{2}$                          |                                               |
| CÍRCULO                 | $A=\pi r^2$                                    | r d                                           |
| SETOR<br>CIRCULAR       | $A_lpha = rac{lpha \cdot \pi r^2}{360^\circ}$ | inter<br>Cocular                              |
| COROA<br>CIRCULAR       | $A=\pi\cdot(R^2-r^2)$                          | consa crooker                                 |


#### ESTRATÉGIAS DE DECOMPOSIÇÃO E RECONFIGURAÇÃO

Para calcular áreas de figuras compostas ou irregulares, podemos usar **decomposição**: dividimos a figura em partes conhecidas (triângulos, retângulos, setores, entre outras) e somamos suas áreas.

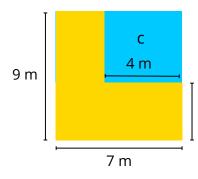
A **reconfiguração** consiste em reorganizar a figura sem alterar sua área total, útil para resolver problemas de forma mais simples ou identificar equivalências. Vamos ver alguns exemplos desses tipos de estratégias.

#### Exemplo 1: Decomposição de um "L" em retângulos

Imagine uma figura em forma de L, formada por dois retângulos. Para calcular sua área total, podemos decompor em dois retângulos separados.



#### CÁLCULO DA ÁREA POR DECOMPOSIÇÃO

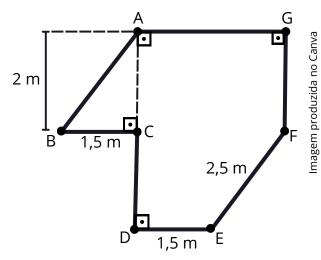

$$A_1=5\cdot 3=15~m^2$$

$$A_2 = 7 \cdot 4 = 28 \ m^2$$

$$A_{total} = A_1 + A_2$$

$$A_{total} = 15 + 28 = 43 \ m^2$$

Observe ainda, que, ao invés de somarmos os dois retângulos (1) e (2), poderíamos completar a figura com um retângulo maior (c).




A área desse retângulo maior é:  $A=7\cdot 9=63~m^2$  Observe que o retângulo (c) que usamos para completar tem 4 m de base e 5 m de altura (9m - 4m). A área desse retângulo é 20 m².

4 m Se retirarmos esse 20m² da área do retângulo maior, teremos os mesmos 43 m² (63 m² - 20 m²) encontrados no cálculo anterior.

#### Exemplo 2: Reconfiguração de uma figura.

Em algumas situações, ao reconfigurarmos uma figura, fica mais fácil calcular sua área.



Aplicado o Teorema de Pitágoras no triângulo ABC, temos:

$$a^{2} = b^{2} + c^{2}$$

$$a^{2} = (1,5)^{2} + 2^{2}$$

$$a^{2} = 2,25 + 4$$

$$a^{2} = 6,25$$

$$a = \sqrt{6,25}$$

$$a = 2,5 m$$

Como AB = 2,5 m, podemos reconfigurar o polígono ABCDEFG, transladando o triângulo ABC, de maneira que os segmentos AB e EF coincidam. Desse modo, obtemos o retângulo ADCG, cuja área, a qual indicaremos por  $A_R$ , sabemos calcular.

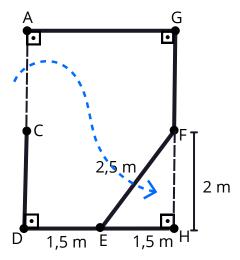



Imagem produzida no Canva

Assim:

$$A_R = (1, 5+1, 5) \cdot (2+2) = 3 \cdot 4 = 12$$

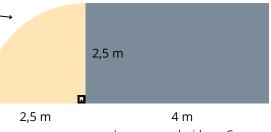
Portanto, a área do retângulo ADCG é igual a 12 m² e, consequentemente, a área do polígono ABCDEFG é igual a 12 m².

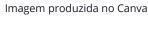


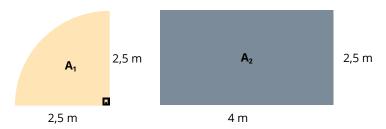
### Exercícios Resolvidos

#### **EXERCÍCIO 1**

Vamos retornar ao texto de contextualização e resolver o problema que foi apresentado.


Sua equipe decidiu construir um espaço com formato composto por um setor circular de 90° (um quarto de círculo), com raio de 2,5 metros, que será coberto com madeira de reflorestamento e um retângulo acoplado ao setor circular, onde uma das medidas do retângulo é igual ao raio do setor (2,5 metros), e a outra medida é 4 metros, esse retângulo será revestido com piso drenante ecológico.


Qual será a área total a ser coberta com os dois materiais sustentáveis? (use  $\pi$  =3,14)


#### **SOLUÇÃO**

Utilizando a estratégia de decomposição de áreas teremos:

- um setor circular de raio de 2,5 m e 90°.
- um retângulo de lados 4m e 2,5 m.



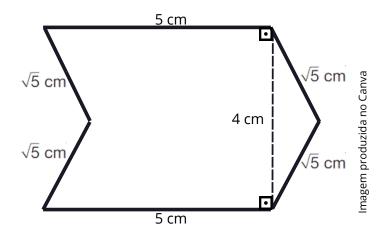




#### CÁLCULO DA ÁREA POR DECOMPOSIÇÃO

A<sub>1</sub> = Área do setor circular com ângulo de 90°

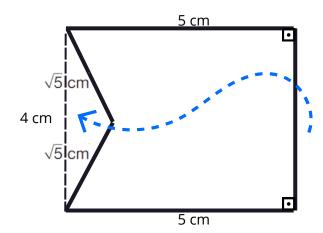
$$egin{align} A_lpha &= rac{lpha \cdot \pi r^2}{360} \ A_{90} &= rac{90 \cdot \pi \cdot 2, 5^2}{360} = rac{90 \cdot 3, 14 \cdot 6, 25}{360} = rac{1.766, 25}{360} pprox 4, 91 \ A_{90} pprox 4, 91 m^2 \ A_1 pprox 4, 91 m^2 \ \end{array}$$


$$egin{aligned} A_2 &= 4 \cdot 2, 5 = 10 \ m^2 \ & \ A_{total} = A_1 + A_2 \ & \ A_{total} = 4, 91 + 10 = 14, 91 \ m^2 \end{aligned}$$

Resposta: Será necessário o total de 14,91 m² de materiais sustentáveis.

#### **EXERCÍCIO 2**

Calcule a área dos polígonos a seguir.


a)



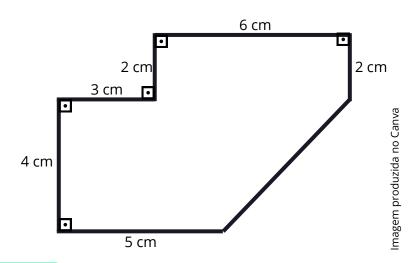
#### **SOLUÇÃO**

Para resolver o problema utilizando o método da reconfiguração, vamos reorganizar as partes do polígono para formar uma figura cuja área seja mais fácil de calcular. Seguiremos os seguintes passos:

Vamos reorganizar o polígono para formar um retângulo.

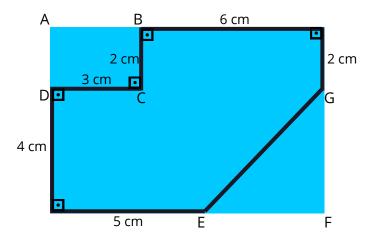


O retângulo formado tem medida da base 5 cm e altura 4 cm. A área é dada por:


$$A = b \cdot h$$

$$A=5\ cm{\cdot}4\ cm$$

$$A = 20 \ cm^2$$


Portanto, a área da figurá é 20 cm<sup>2</sup>.

b)



#### **SOLUÇÃO**

Vamos completar a figura para formar um retângulo.



Observe que foi formado um retângulo ABCD e um triângulo EFG.

Calculando a área do retângulo ABCD, temos:

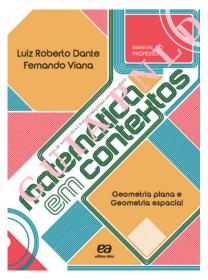
$$A_1 = b \cdot h \Rightarrow A_1 = 3 \cdot 2 \Rightarrow A_1 = 6 \ cm^2$$

Calculando a área do triângulo EFG, temos:

$$A_2=rac{b\cdot h}{2}\Rightarrow A_2=rac{(3+6-5)\cdot 4}{2}\Rightarrow A_2=rac{16}{2}=8\ cm^2$$

Podemos, também, calcular a área do maior retângulo formado.

$$A_3 = b \cdot h \Rightarrow A_3 = 9 \cdot 6 \Rightarrow A_3 = 54 \ cm^2$$


Para calcular a área da figura original, podemos subtrair da área do retângulo maior as áreas do retângulo ABCD e triângulo EFG.

$$A = A_3 - A_1 - A_2$$

$$A = 54 - 6 - 8 = 40 \ cm^2$$

Portanto, a área da figura original é 40 cm<sup>2</sup>.

### Material Extra



#### LIVRO MATEMÁTICA EM CONTEXTOS -GEOMETRIA PLANA E GEOMETRIA ESPACIAL

 Para consolidação dos conteúdos apresentados neste material, sugerimos as atividades das páginas: 58, 59, 60 e 61.



#### LIVRO MATEMÁTICA PRISMA -GEOMETRIA

 Para consolidação dos conteúdos apresentados neste material, sugerimos as atividades das páginas: 17,18, 29 e 30.

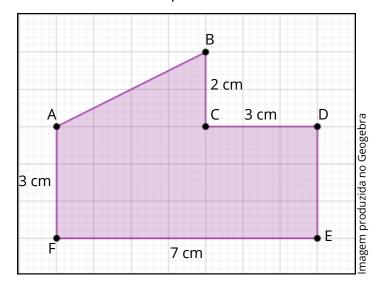
### ASSISTA AOS VÍDEOS E REALIZE AS ATIVIDADES APONTANDO O CELULAR PARA O QR CODE ABAIXO OU CLIQUE NO BOTÃO.



Decomposição de formas para calcular a área: soma






Decomposição de formas para calcular a área: subtração

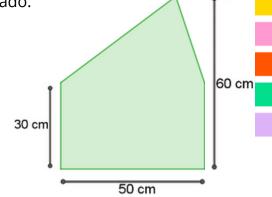


# **Atividades**

#### **ATIVIDADE 1**

A imagem abaixo representa uma planta baixa de varanda na escala de 1:100, ou seja, cada 1 cm na imagem representa 100 cm na realidade (1 metro). O piso dessa varanda será coberto com cerâmicas quadradas de 25 cm de lados.

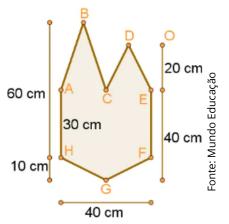



Quantas cerâmicas, no mínimo, serão necessárias para fazer esse serviço?

- A) 25 cerâmicas
- B) 100 cerâmicas
- C) 200 cerâmicas
- D) 400 cerâmicas
- E) 425 cerâmicas

#### **ATIVIDADE 2**

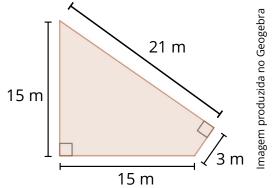
Calcule a medida da área do pentágono na figura ao lado.


- A) 750 cm<sup>2</sup>
- B) 1 500 cm<sup>2</sup>
- C) 2 250 cm<sup>2</sup>
- D) 3 000 cm<sup>2</sup>
- E) 9 000 cm<sup>2</sup>



#### **ATIVIDADE 3**

Calcule a área da figura (octógono não regular), sabendo que os pontos A, C e E são retilíneos, que o ponto C é ponto médio do segmento AE e que a reta que os contém é paralela à reta que contém os pontos H e F.


- A) 200 cm<sup>2</sup>
- B) 300 cm<sup>2</sup>
- C) 1 000 cm<sup>2</sup>
- D) 1 900 cm<sup>2</sup>
- E) 2 200 cm<sup>2</sup>



#### **ATIVIDADE 4**

A figura mostra um lote de esquina, com quatro lados, e suas respectivas medidas. Qual é área desse lote, em metros quadrados?

- A) 112
- B) 144
- C) 288
- D) 294
- E) 315

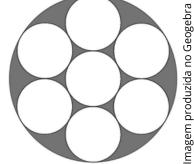


#### **ATIVIDADE 5**

Na figura, ABCDEF é um hexágono irregular. Os pontos B, D e E são colineares (estão alinhados) assim como os pontos C, D e F.

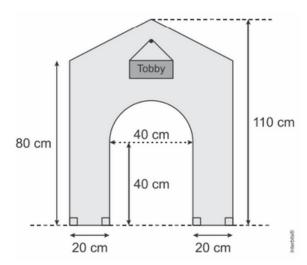
A reta que passa por B, D e E faz 90° com a reta que passa por C, D e F. Encontre a área desse hexágono, em centímetros quadrados.

- A) 20,5
- B) 12,0
- C) 18,5
- D) 29,0
- E) 16,0




#### **ATIVIDADE 6**

Um pequeno agricultor possuía em seu sítio um sistema de irrigação composto por 7 pequenos aparelhos que conseguiam irrigar, cada um, uma área circular com 2 metros de raio. Visando expandir seu negócio, esse agricultor pretende substituir todos os 7 pequenos aparelhos por um único e maior, que conseguirá irrigar toda a área que era antes irrigada e ainda atingir algumas áreas a mais que estão sombreadas na figura a seguir.


Utilizando  $\pi=3,1$ , calcule a área que o irrigador maior conseguirá atingir a mais que os irrigadores anteriores.

- A) 18,6 m<sup>2</sup>.
- B) 20,4 m<sup>2</sup>.
- C) 24,8 m<sup>2</sup>.
- D) 28,0 m<sup>2</sup>.
- E) 30,2 m<sup>2</sup>.



#### **ATIVIDADE 7**

(IFPE 2017 - adaptada) Os alunos da 1ª série adotaram um cachorro que sempre passeava próximo à escola. A figura abaixo representa a vista frontal da casa que estão construindo para esse cachorro.



Sabendo que a casa vai ser toda construída de madeira, qual é área da superfície de madeira na parede frontal da casa, de acordo com a figura acima? (Use  $\pi$  = 3,14).

- A) 4744 cm<sup>2</sup>.
- B) 5372 cm<sup>2</sup>.
- C) 6000 cm<sup>2</sup>.
- D) 6972 cm<sup>2</sup>.
- E) 7600 cm<sup>2</sup>.

#### **ATIVIDADE 8**

Qual a área da figura a seguir, sabendo que a parte curva é um semicírculo? (Considere  $\pi$  = 3).

- A) 252 cm<sup>2</sup>
- B) 198 cm<sup>2</sup>
- C) 144 cm<sup>2</sup>
- D) 108 cm<sup>2</sup>
- E) 54 cm<sup>2</sup>

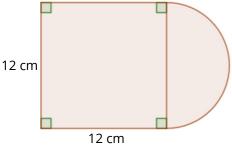
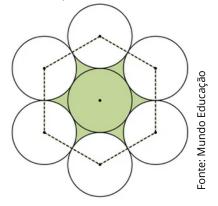



Imagem produzida no Geogebra

#### **ATIVIDADE 9**

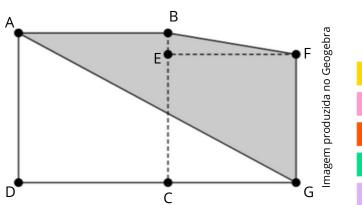
A figura é formada por 7 círculos idênticos de raios medindo 1,0 metro. Observe que os seis centros dos círculos de fora são vértices de um hexágono regular de lados medindo 2,0 metros. Qual é a área da região pintada, em metros quadrados?


A) 
$$2\pi - 6\sqrt{3}$$

B) 
$$2\pi + 6\sqrt{3}$$

C) 
$$6\sqrt{3} - 2\pi$$

D) 
$$6\sqrt{3}+2\pi$$


E) 
$$12\pi\sqrt{3}$$



#### ATIVIDADE 10

Na figura abaixo, ABCD e EFGC são quadrados de áreas 49 cm² e 36 cm², respectivamente. Qual é a área da região cinza?

- A) 85,0 cm<sup>2</sup>
- B) 42,5 cm<sup>2</sup>
- C) 21,0 cm<sup>2</sup>
- D) 13,5 cm<sup>2</sup>
- E) 6,0 cm<sup>2</sup>



## Referências

DANTE, Luiz Roberto; VIANA, Fernando. Matemática em contextos . Volume 3. São Paulo: Ática, 2020

BONJORNO, Giovanni Jr.; CÂMARA, Paulo. Prisma: matemática – geometria . São Paulo: FTD, 2020.

ACADEMIA KHAN ACADEMY.Problemas sobre área da superfície. Disponível em: <a href="https://pt.khanacademy.org/math/recomposicao-da-aprendizagem-3-serie-parana/x2fdf8b118084f869:1-trimestre-semana-6-a-9/x2fdf8b118084f869:untitled-84">https://pt.khanacademy.org/math/recomposicao-da-aprendizagem-3-serie-parana/x2fdf8b118084f869:1-trimestre-semana-6-a-9/x2fdf8b118084f869:untitled-84</a>. Acesso em: 23 abr. 2025.

ACADEMIA KHAN ACADEMY. Revisão sobre área da superfície. Disponível em: <a href="https://pt.khanacademy.org/math/basic-geo/x7fa91416:circles-cylinders-cones-and-spheres/x7fa91416:area-and-circumference-of-fractions-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circumference-of-parts-of-circles/e/area-and-circles/e/area-and-circles/e/area-and-circles/e/area-and-circles/e/area-and-circles/e/area-and-circles/e/area-and-circles/e/area-and-circles/e/area-and-circles/e/area-and-circles/e/area-and-circles/e/area-and-circles/e/area-and-circles/e/area-and-circles/e/area-and-circles/e/area-and-circles/e/area-and-circles/e/area-and-c