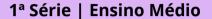


Material Estruturado

SUBSECRETARIA DE EDUCAÇÃO BÁSICA E PROFISSIONAL

GERÊNCIA DE CURRÍCULO DA EDUCAÇÃO BÁSICA

QUINZENA



MATEMÁTICA

FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA

HABILIDADE(S)	EXPECTATIVA(S) DE APRENDIZAGEM	DESCRITOR(ES)		
EM13MAT302 Construir modelos empregando as funções polinomiais de 1º ou 2º graus, para resolver problemas em contextos diversos, com ou sem apoio de tecnologias digitais.	 Identificar as formas gerais das funções polinomiais do 1º grau e do 2º grau. Reconhecer as diferenças no comportamento gráfico entre funções afins (reta) e quadráticas (parábola). Analisar dados de problemas contextualizados e selecionar a função polinomial mais adequada (1º ou 2º grau) para representar a relação entre as variáveis envolvidas. Aplicar os modelos construídos com função polinomial do 1º grau ou do 2º grau para resolver problemas em diferentes contextos. 	D078_M Corresponder uma função polinomial do 1º grau a seu gráfico. D086_M Reconhecer expressão algébrica que representa uma função a partir de uma tabela. D132_M Resolver problema envolvendo uma função do 1º grau D133_M Resolver problemas que envolvam os pontos de máximo ou de mínimo de uma função do 2º grau.		

Caro(a) Professor(a),

Informamos que, a partir da Quinzena 14, o Material Estruturado incluirá todo o conteúdo relativo a esta quinzena, de modo a não haver mais duas capas e sintetizar o conteúdo em um único volume. Esperamos, assim, que essa mudança facilite o seu trabalho, planejamento e sua organização em sala de aula.

Contextualização

HISTÓRIA DAS FUNÇÕES

No início do estudo das funções, matemáticos renomados como o alemão Gottfried Wilhelm Leibniz (1646-1716) e o inglês Isaac Newton (1643-1727) estavam focados em explorar funções além da função afim. Ambos concentraram seus esforços em desenvolver funções que envolviam variáveis mais complexas e que estavam mais relacionadas ao estudo do cálculo e das mudanças nas grandezas físicas. Nesse contexto, a função afim, que descreve relações lineares e constantes entre as variáveis, foi deixada em segundo plano, enquanto os matemáticos se dedicavam a estudar funções com comportamentos mais elaborados, como as funções quadráticas e outros tipos mais avançados.

Foi apenas no século XX, particularmente nas décadas de 1960 e 1970, que a função afim recebeu maior atenção. Esse novo interesse surgiu de um grupo de matemáticos, a maioria franceses, que já desde 1934, se dedicavam ao estudo das funções de forma coletiva. Esse grupo, formado por matemáticos da Universidade de Estrasburgo, decidiu que o trabalho seria realizado de maneira colaborativa, sem menção a autores individuais. Para assinar os livros, trabalhos e teses publicadas, foi criado um pseudônimo coletivo: Nicolas Bourbaki.

Autor desconhecido -

http://www.neverendingbooks.org/bourba ki-and-the-miracle-of-silence

Foto, tirada em um congresso em setembro de 1938, estão alguns matemáticos que constituíram a fase inicial do grupo Bourbaki.

A partir dessa colaboração, as funções afim e quadrática começaram a ser revisadas e reinterpretadas, adquirindo uma nova perspectiva no campo da Matemática. A função afim, por sua simplicidade e aplicabilidade, passou a ser reconhecida como uma base sólida para o entendimento de relações lineares. Já a função quadrática, com seu comportamento não-linear, continuou a desempenhar um papel importante no estudo de fenômenos como o movimento de projéteis e a otimização de sistemas em várias áreas.

Esse desenvolvimento histórico nos permite ver como o estudo das funções evoluiu, ganhando cada vez mais relevância e se tornando fundamental não só na Matemática, mas em diversas outras áreas do conhecimento. Neste material, vamos explorar mais a fundo como as funções afim e quadrática são utilizadas para resolver problemas práticos e como elas ajudam a descrever e entender o mundo ao nosso redor.

CONSTRUINDO MODELOS COM FUNÇÕES DO 1º E 2º GRAU PARA RESOLVER PROBLEMAS EM DIVERSOS CONTEXTOS

Quando falamos em construir *modelos matemáticos*, estamos nos referindo à capacidade de representar uma *situação do mundo real por meio de uma equação matemática*. As funções de 1º e 2º grau são frequentemente usadas para descrever relações lineares ou não lineares entre variáveis e podem ser aplicadas em contextos diversos, como prever comportamentos econômicos, analisar trajetórias de objetos em movimento, ou até mesmo modelar o crescimento de populações. Agora iremos ver alguns exemplos em diversas áreas e situações que podem ser modeladas matematicamente, por funções afim ou quadráticas.

Exemplo 1: Função Afim em Problemas de Economia Cálculo do Custo de Produção

Imagine uma fábrica que produz camisetas e tem um custo fixo de R\$ 2.000,00 por mês, independentemente do número de camisetas produzidas. Além disso, o custo variável por unidade produzida é de R\$10,00. A relação entre o custo total de produção $\textbf{\textit{C(x)}}$ e a quantidade de camisetas produzidas $\textbf{\textit{x}}$ pode ser modelada por uma função afim.

A equação para o custo total de produção seria uma função afim

$$C(x) = 10 \cdot x + 2000$$

Onde:

- C(x) é o custo total de produção (em reais),
- x é o número de camisetas produzidas,
- O custo fixo é R\$ 2.000,00 (valor de b),
- O custo variável por unidade é R\$ 10,00 (coeficiente a).

Exemplos de cálculos:

Se a fábrica produzir 500 camisetas, o custo total será:

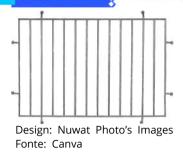
$$C(x) = 10 \cdot x + 2000 \ C(500) = 10 \cdot 500 + 2000 \ C(500) = 5000 + 2000 \ C(500) = 7000$$

Portanto, o custo total de produzir 500 camisetas será R\$ 7.000,00.

Esse *modelo* ajuda a prever o custo de produção com base na quantidade de produtos fabricados.

Exemplo 2: Função Quadrática em Problemas de Economia

Uma empresa que fabrica telas de proteção para janelas precisa calcular a quantidade de material necessário para produzir telas de um tamanho específico.



Situação:

A empresa fabrica telas para janelas retangulares. Em um pedido de tela, percebeuse que a largura da janela está relacionada à altura de uma maneira específica: a largura da janela é o triplo da altura, subtraído de 0,5 m. Para produzir a tela que cobrirá toda a janela, a empresa precisa calcular as dimensões exatas da janela, ou seja, a altura e a largura, para que o material seja comprado de forma eficiente, evitando desperdícios.

Objetivos:

- a) Sabendo que a medida da altura da janela é representada por x, escreva a expressão que indica a largura da janela em função de x.
- b) Escreva a fórmula que representa a área da janela em função de x.
- c) Use as informações anteriores para escrever uma equação que permita calcular o valor de x (medida de altura da janela) quando a área da janela é de 3,12 m².

Respostas:

a)Sabemos que a largura da janela é o triplo da altura, subtraído de 0,5 m. Assim, se a altura da janela é representada por x e a largura por L, a expressão para a largura será:

$$L(x) = 3x - 0, 5$$

b) A área de um retângulo é dada pela fórmula: A = largura × altura Substituindo a expressão da largura (em função de x) e a altura (também em função de x), temos:

$$A(x)=(3x-0,5)\cdot x \ A(x)=3x^2-0,5x$$

Modelo matemático para calcular a área dessa janela em função da altura. É uma função quadrática.

c) Podemos escrever a equação a partir da função obtida no item anterior. Para isso, substituiremos o valor de A(x) por 3,12 m²:

$$A(x) = (3x - 0, 5) \cdot x \ 3, 12 = 3x^2 - 0, 5x \ 0 = 3x^2 - 0, 5x - 3, 12$$

Esta é a equação quadrática que permite o cálculo da altura quando a área é 3,12 m².

Com uma lata de tinta de 12 L é possível pintar uma demão de uma área de aproximadamente 80 m². Agora, imagine que se queira passar duas demãos de tinta em uma parede retangular, e sabe-se que a largura da parede é 4 vezes a medida de comprimento da altura da parede.

Pintores, ao comprarem tintas para pintar paredes, geralmente estimam a quantidade necessária de tinta de acordo com a medida de área das regiões que serão pintadas.

- a) Sabendo que a medida de comprimento da altura da parede é x, qual é a medida de comprimento da largura?
- b) Escreva a lei da função que indica a medida de área da parede.
- c) Qual é a medida de área total a ser pintada considerando as duas demãos de tinta?

Respostas:

a) Sabemos que a largura (L) da parede é 4 vezes a altura. Assim, se a altura da parede for representada por x, a expressão para a largura será:

$$L(x) = 4x$$

Modelo matemático para calcular a largura da parede em função da sua altura. É uma função afim.

b) A área de um retângulo é dada pela fórmula:

$A = largura \times altura$

Substituindo as expressões para largura e altura:

$$A(x) = 4x \cdot x = 4x^2$$

Portanto, a função que representa a área da parede é:

$$A(x) = 4x^2$$

Modelo matemático para calcular a área da parede. É uma função quadrática.

c) Sabemos que uma demão de tinta cobre a área da parede uma vez. Como queremos pintar duas demãos, precisamos dobrar a área calculada.

$$\acute{A}rea\ total = 2 \cdot A(x)$$

$$cute{A}rea\ total = 2\cdot 4x^2$$

$$\acute{A}rea\ total = 8x^2$$

Modelo matemático para calcular a área total com duas demão de tinta. É uma função quadrática.

DIFERENÇAS NO COMPORTAMENTO GRÁFICO ENTRE FUNÇÕES AFINS E QUADRÁTICAS

As funções afins e quadráticas são dois tipos de funções polinomiais que apresentam comportamentos gráficos bem distintos. Enquanto as *funções afins* geram gráficos do tipo *reta*, as *funções quadráticas* geram gráficos do tipo *parábola*. Vamos entender as principais diferenças entre elas, que são essenciais para a construção de modelos matemáticos e para a interpretação gráfica de dados.

FUNÇÃO AFIM (FUNÇÃO DO 1º GRAU)

Características principais:

Uma função afim tem a forma geral:

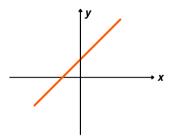
$$f(x) = ax + b$$
 ou $y = ax + b$

Onde:

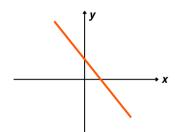
- a é o coeficiente angular (inclinação da reta);
- b é o coeficiente linear (interceptação com o eixo y).

O gráfico de uma função afim é sempre uma reta.

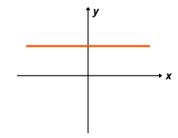
Dependendo do valor de a, a reta pode ter diferentes inclinações:



Se a > 0, a função é crescente (quanto maior o valor de x, maior o valor de f(x) = y).



Se a < 0, a função é decrescente (quanto maior o valor de x, menor o valor de f(x) = y).



Se a = 0, a função é constante (para qualquer valor de x, o valor de f(x) = y será o mesmo).

- O gráfico é uma linha reta.
- Não existe curvatura; o comportamento é sempre linear.
- A ordenada do ponto de interseção com o eixo y é dada por y = b, ou seja, a reta passa pelo ponto (0, b).

(0,b)

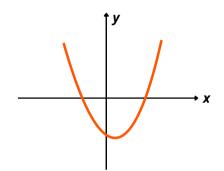
FUNÇÃO QUADRÁTICA (FUNÇÃO DO 2º GRAU)

Uma função quadrática tem a forma geral:

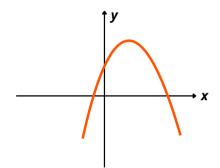
$$f(x) = ax^2 + bx + c$$

Onde:

- a, b, e c são coeficientes constantes.
- O gráfico de uma função quadrática é uma parábola. A concavidade da parábola depende do valor de a:



Se a > 0, a parábola tem concavidade voltada para cima.



Se a < 0, a parábola tem concavidade voltada para baixo.

- Se **a** = **0**, a função se torna uma função afim, e o gráfico é uma reta.
- O gráfico de uma função quadrática é uma curva, chamada de parábola.
- A parábola pode ter um ponto de mínimo ou máximo, dependendo do valor de a.
- A ordenada do ponto de interseção com o eixo y é dada por y = c, ou seja, a parábola passa pelo ponto (0, c).
- A parábola tem um vértice, que é o ponto mais baixo (se a > 0) ou mais alto (se a < 0) da curva.

COMPARAÇÃO GRÁFICA ENTRE AS FUNÇÕES

	FUNÇÃO AFIM f(x) = ax+ b	FUNÇÃO QUADRÁTICA $f(x) = ax^2 + bx + c$		
FORMA	O gráfico de uma função afim é uma linha reta .	O gráfico de uma função quadrática é uma curva em forma de parábola .		
COMPORTAMENTO	O comportamento é linear, ou seja, a mudança em y é constante para qualquer mudança em x.	O comportamento é não linear, com a taxa de variação de y mudando conforme o valor de x aumenta ou diminui. Isso significa que a taxa de crescimento ou diminuição não é constante.		
VARIAÇÃO	Na função afim, a inclinação da reta (definida por a) é constante em todo o gráfico.	Na função quadrática, a taxa de variação de y depende de x e muda ao longo do gráfico.		
INTERSEÇÕES COM OS EIXOS	O gráfico de uma função afim sempre intercepta o eixo y em um ponto de coordenadas (0, b). Quando a for diferente de zero, a reta intercepta o eixo x.	O gráfico de uma função quadrática intercepta o eixo em um ponto de coordenadas (0, c). A quantidade do interseções da parábola com eixo x varia de acordo com valor de delta. Podem ser doi pontos de interseção, um ponto ou nenhum ponto.		

Exercícios Resolvidos

EXERCÍCIO 1

Um objeto é lançado para cima, a partir do solo, e a altura h, em metro, varia em função do tempo t, em segundo, decorrido após o lançamento. Supondo que a lei dessa função seja $h(t)=-5t^2+30t\,$ responda:

- a) Qual a altura do objeto 4 segundos após o lançamento?
- b) Quanto tempo após o lançamento o objeto encontra-se a 40 metros de altura?

RESPOSTA

a) Para calcular a altura 4 segundos após o lançamento, basta substituir t=4 na função da altura h(t).

$$h(4) = -5 \cdot {(4)}^{^2} + 30 \cdot 4$$

$$h(4) = -5 \cdot 16 + 120$$

$$h(4) = -80 + 120$$

$$h(4) = 40 \text{ metros}$$

Portanto, a altura do objeto 4 segundos após o lançamento é 40 metros.

b) Agora, queremos saber o tempo t em que a altura é igual a 40 metros. Ou seja, devemos resolver a equação: $h(t)=40\,$

Substituindo na fórmula da altura: $40 = -5t^2 + 30t$

Rearranjando a equação: $5t^2 - 30t + 40 = 0$

Dividindo toda a equação por **5** para simplificar: $t^2-6t+8=0$

Agora, resolvemos essa equação quadrática usando a fórmula de Bhaskara:

$$t=rac{-(-6)\pm\sqrt{(-6)^2-4(1)(8)}}{2(1)}$$

$$t=\frac{6\pm\sqrt{36-32}}{2}$$

$$t = \frac{6 \pm \sqrt{4}}{2}$$

$$t = \frac{6 \pm 2}{2}$$

Agora temos duas soluções para t:

$$t=rac{6+2}{2}=rac{8}{2}=4$$

$$t=\tfrac{6-2}{2}=\tfrac{4}{2}=2$$

Portanto, o objeto encontra-se a 40 metros de altura 2 segundos após o lançamento e também 4 segundos após o lançamento.

EXERCÍCIO 2

(Enem) Uma escola analisou as propostas de cinco empresas para alugar uma máguina fotocopiadora que atenda à demanda de 12000 cópias mensais. Cada empresa cobra um valor fixo pelo aluguel mensal da máquina, mais um valor proporcional ao número de cópias realizadas, ambos em real. Assim, o custo total C(x), do aluguel de uma máquina, que atenda a uma demanda de x **cópias** *mensais*, em cada uma das cinco empresas, pode ser dado pelas expressões:

> Empresa I : C(x) = 500 + 0,40xEmpresa II : C(x) = 800 + 0,50xEmpresa III : C(x) = 2000 + 0,20xEmpresa IV : C(x) = 1100 + 0,25xEmpresa V : $C(x) = 600 + 0{,}30x$

A escola escolheu a empresa que apresentou a proposta que fornecia o serviço necessário pelo menor custo mensal. A empresa escolhida foi a:

A) I

B) II.

C) III.

D) IV.

E) V.

RESPOSTA

Vamos calcular o custo total C para cada empresa, considerando uma demanda de 12000 cópias mensais (ou seja, x = 12000).

Empresa I: A fórmula para o custo é: C(x) = 500 + 0,40x. Substituindo x = 12000:

$$C(x) = 500 + 0,40 \cdot 12000 = 500 + 4800 = 5300$$

Empresa II: A fórmula para o custo é: C(x) = 800 + 0,50x. Substituindo x = 12000:

$$C(x) = 800 + 0,50 \cdot 12000 = 800 + 6000 = 6800$$

Empresa III: A fórmula para o custo é:C(x)=2000+0,20x. Substituindo x=12000:

$$C(x) = 2000 + 0, 20 \cdot 12000 = 2000 + 2400 = 4400$$

Empresa IV: A fórmula para o custo é:C(x) = 1100 + 0,25x. Substituindo x = 12000:

$$C(x) = 1100 + 0,25 \cdot 12000 = 1100 + 3000 = 4100$$

Empresa V: A fórmula para o custo é: C(x)=600+0,30x . Substituindo x=12000 :

$$C(x) = 600 + 0,30 \cdot 12000 = 600 + 3600 = 4200$$

Comparando os custos:

Empresa I: 5300 Empresa II: 6800

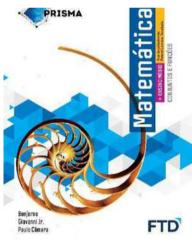
Empresa III: 4400 Empresa IV: 4100

Empresa V: 4200

Logo, a empresa IV apresenta o menor custo, que é 4100 reais.

LIVRO MATEMÁTICA EM CONTEXTOS -FUNÇÃO AFIM E FUNÇÃO QUADRÁTICAS

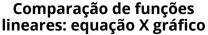
 Para consolidação dos conteúdos apresentados neste material, sugerimos as atividades das páginas: 72 e 73, ainda as páginas: 123 e 124.

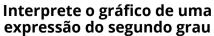


LIVRO MATEMÁTICA PRISMA -CONJUNTOS E FUNÇÕES

 Para consolidação dos conteúdos apresentados neste material, sugerimos as atividades das páginas: 96 e 97. Ainda as páginas: 126,127, 128 e 129.

ASSISTA AOS VÍDEOS E REALIZE AS ATIVIDADES APONTANDO O CELULAR PARA O QR CODE ABAIXO OU CLIQUE NO BOTÃO.





Atividades

O texto a seguir é referência para as atividades 1, 2 e 3.

Uma empresa fabrica um produto e percebe que seus custos fixos mensais somam R\$ 20.000,00, enquanto o custo por unidade fabricada é de R\$ 50,00. Além disso, a empresa vende cada unidade desse produto por R\$ 120,00.

Considere que o lucro mensal da empresa L(x) é dado pela diferença entre a receita R(x) e os custos totais C(x), onde: R(x) = 120x e C(x) = 20000 + 50x.

ATIVIDADE 1

Qual é o custo para fabricar 300 unidades?

- A) 40 000
- B) 35 000
- C) 30 000
- D) 25 000
- E) 20 000

ATIVIDADE 2

No mínimo, quantas unidades devem ser fabricadas para essa empresa começar a ter lucro?

- A) 284
- B) 285
- C) 286
- D) 287
- E) 288

ATIVIDADE 3

Quantas unidades precisam ser vendidas, no mínimo, para que a empresa obtenha um lucro acima de R\$ 10.000 no mês?

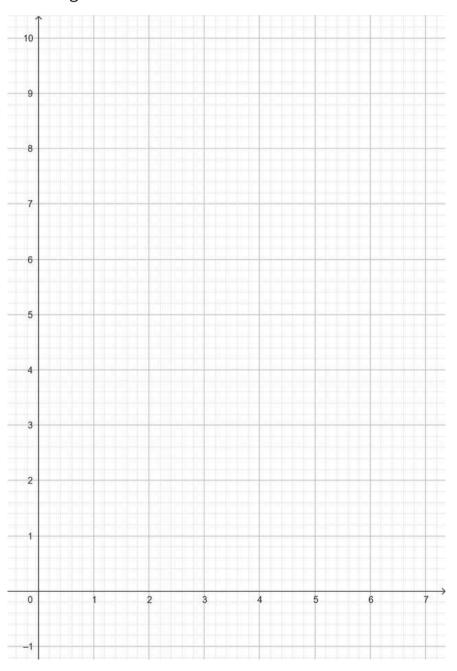
- A) 426
- B) 427
- C) 428
- D) 429
- E) 430

ATIVIDADE 4

O movimento de um móvel foi observado e a sua posição foi registrada durante um intervalo de tempo. A tabela abaixo apresenta a posição y (em metros) desse móvel em função do tempo x (em segundos).

х	0	1	2	3	4	5	6
у	0	5	8	9	8	5	0

Esboce o gráfico utilizando os dados da tabela acima e identifique o tipo de função correspondente ao gráfico.



ATIVIDADE 5

Uma empresa de pintura é contratada para pintar paredes externas de casas, com áreas menores que 60 m^2 . O preço cobrado pela pintura depende da área da parede a ser pintada. Para áreas menores, o preço é baseado no custo fixo inicial e no custo por metro quadrado. No entanto, para áreas maiores, a empresa oferece um desconto proporcional ao aumento da área, o que faz com que o preço total seja descrito por uma função quadrática onde f(x) é o preço cobrado para pintar uma parede de área x m^2 . Sabe-se que, se x = 0 então f(x) = 0, se x = 10 então f(x) = 350 reais e, se x = 20 então f(x) = 600 reais.

Qual é a lei (expressão) que define essa função quadrática?

A)
$$f(x) = 0.5x^2 + 40x$$

B)
$$f(x) = 0.5x^2 - 40x$$

C)
$$f(x) = -0.5x^2 + 40x$$

D)
$$f(x) = -0.5x^2 - 40x$$

E)
$$f(x) = 40x^2 - 0.5x$$

ATIVIDADE 6

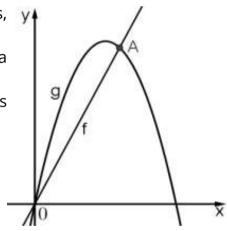
Ao lado temos o gráfico de duas funções polinomiais, y uma de 1° grau e outra de 2° grau.

A função de 1° grau é expressa pela lei f(x) = 2x e a função de 2° grau é expressa pela lei $g(x) = -2x^2 + 10x$. Quais são as coordenadas do ponto A onde os dois gráficos se intersectam?

C)
$$A = (8, 4)$$

D)
$$A = (4, 8)$$

E)
$$A = (4, 0)$$



ATIVIDADE 7

x	f(x)
0	5
1	7
2	9
3	11

Em relação aos valores na tabela ao lado, julgue cada uma das afirmativas a seguir em Verdadeira ou Falsa.

- A) A função que relaciona os valores de x com os valores de f(x) é polinomial de 1° grau;
- B) A função que relaciona os valores de x com os valores de f(x) é polinomial de 2° grau;
- C) Se mantido o padrão mostrado nessa tabela, para x = 5 tem-se f(x) = 17;
- D) A lei para essa função é $f(x) = x^2 + 5$ e, portanto, f(5) = 30;
- E) A lei para essa função é f(x) = 2x + 5 e, portanto, f(5) = 15.

O texto a seguir é referência para as atividades 8, 9 e 10.

Um comerciante avaliou que, para uma certa mercadoria, o lucro obtido na venda de x unidades, a partir da venda de uma unidade, é calculado pela expressão L(x)=10+1,2x.

ATIVIDADE 8

Se ele vende 50 unidades, então qual o lucro obtido?

- A) 40 reais
- B) 70 reais
- C) 80 reais
- D) 90 reais
- E) 110 reais

ATIVIDADE 9

Qual é o lucro desse comerciante na venda de 70 unidades?

- A) 50 reais
- B) 65 reais
- C) 94 reais
- D)100 reais
- E) 105 reais

ATIVIDADE 10

Quantas unidades o comerciante deve vender para obter lucro de R\$ 970,00?

- A) 600 unidades
- B) 650 unidades
- C) 700 unidades
- D) 750 unidades
- E) 800 unidades

Referências

DANTE, Luiz Roberto; VIANA, Fernando. Matemática em contextos . Volume 1. São Paulo: Ática, 2020

BONJORNO, Giovanni Jr.; CÂMARA, Paulo. Prisma: matemática – conjuntos e funções . São Paulo: FTD, 2020.

KHAN ACADEMY. Interprete o gráfico de uma expressão do segundo grau. Khan Academy, 2025. Disponível em: https://pt.khanacademy.org/math/em-mat-algebra/x34e9dd8107ca5eda:untitled-705/e/funcao-quadratica. Acesso em: 23 mar. 2025.

. Acesso em: 02 abr. 2025.

KHAN ACADEMY. Comparação de funções lineares: equação X gráfico. Khan Academy, 2025. Disponível em:

<u>ACADEMIA KHANACADEMIA KHAN. Algoritmos . Disponível em: https://pt.khanacademy.org/math/1-serie-em-mat-sp/x82b03a9b6c8af113:untitled-579/x82b03</u>. Acesso em: 02 abr. 2025.