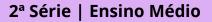


Material 5/09 a 26/09 Estruturado

SUBSECRETARIA DE EDUCAÇÃO BÁSICA E PROFISSIONAL

GERÊNCIA DE CURRÍCULO DA EDUCAÇÃO BÁSICA



MATEMÁTICA

LEI DOS SENOS E LEI DOS COSSENOS

HABILIDADE(S)	EXPECTATIVA(S) DE APRENDIZAGEM	DESCRITOR(ES) DO PAEBES		
(EM13MAT308) Aplicar as relações métricas, incluindo as leis do seno e do cosseno ou as noções de congruência e semelhança, para resolver e elaborar problemas que envolvem triângulos, em variados contextos.	 Utilizar seno, cosseno e tangente na resolução de problemas. Compreender a demonstração da Lei dos senos. Compreender a demonstração da Lei dos cossenos. Utilizar a Lei dos senos e dos cossenos na resolução de problemas. 	D051_M Resolver problema que envolva razões trigonométricas no triângulo retângulo (seno, cosseno, tangente).		

Caro(a) Professor(a),

Informamos que, a partir da Quinzena 14, o Material Estruturado incluirá todo o conteúdo relativo a esta quinzena, de modo a não haver mais duas capas e sintetizar o conteúdo em um único volume. Esperamos, assim, que essa mudança facilite o seu trabalho, planejamento e sua organização em sala de aula.

Informamos, ainda, que o período de **22 a 26/09** será destinado à **preparação para a 3.ª edição** da Avaliação de Monitoramento da Aprendizagem **(AMA)**; por esse motivo, o material foi reduzido.

Contextualização

Você já percebeu que, muitas vezes, as respostas que procuramos não aparecem de forma direta? Na vida — e na matemática — é comum precisarmos observar com mais atenção, ligar ideias que parecem desconectadas, aplicar conhecimentos adquiridos em contextos totalmente novos. É justamente nesse movimento de buscar, relacionar e concluir que o aprendizado acontece.

A lei dos senos e a lei dos cossenos são ótimos exemplos disso. À primeira vista, podem parecer apenas mais duas fórmulas para resolver problemas com triângulos. Mas, na prática, elas representam muito mais. Mesmo quando não temos todos os dados, ou a solução não está visível de imediato, podemos chegar lá — com lógica, estratégia e compreensão.

Você vai perceber que, em muitos casos, as razões trigonométricas seno, cosseno e tangente não são suficientes por si só. É aí que entram essas leis, permitindo que se extraia o que falta, com base em relações entre os elementos de um triângulo.

Neste material, nosso objetivo é justamente esse: ampliar seu repertório matemático sobre trigonometria. Vamos explorar aplicações da lei dos senos e da lei dos cossenos em diferentes situações e te mostrar como essas ferramentas podem ser utilizadas com mais autonomia, clareza e segurança.

Mais do que resolver problemas sobre triângulos, você estará aprendendo a pensar de forma mais estruturada — e isso faz diferença dentro e fora da sala de aula.

Bons estudos!

Conceitos e Conteúdos

RAZÕES TRIGONOMÉTRICAS DE ÂNGULOS RETO E OBTUSOS

Já estudamos as razões trigonométricas aplicadas aos ângulos agudos de triângulos retângulos, ou seja, para ângulos menores que 90°. No entanto, para utilizarmos essas razões em **qualquer triângulo**, precisamos compreender como elas se comportam também para ângulos **retos (90°)** e **obtusos (entre 90° e 180°)**.

A justificativa completa para os valores e propriedades que veremos neste tópico será estudada com mais profundidade na terceira série, por meio do círculo trigonométrico. Por enquanto, vamos apenas apresentar e utilizar essas propriedades de maneira prática, sem nos aprofundar em suas justificativas.

Ângulo Reto

sen 90°	1
cos 90°	0
tan 90°	não está definido

Uma forma de compreender isso é lembrar que a tangente pode ser obtida pela razão entre o seno e o cosseno:

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

Assim,
$$an 90^\circ = rac{ ext{sen } 90^\circ}{ ext{cos } 90^\circ} = rac{1}{0}$$
, o que não tem valor definido.

Ângulo Obtuso

Para determinar as razões trigonométricas de um ângulo obtuso, utilizamos a ideia de **ângulo suplementar**. Dois ângulos são suplementares quando sua soma é igual a 180°. Assim, se α é um ângulo obtuso, seu suplemento é 180° – α .

Relacionamos as razões trigonométricas de um ângulo obtuso com seu suplementar da seguinte forma:

• O seno de um ângulo obtuso é igual ao seno do seu suplemento:

$$\operatorname{sen} \alpha = \operatorname{sen} (180^{\circ} - \alpha)$$

• O **cosseno** de um ângulo obtuso é igual ao seno do seu suplemento:

$$\cos \alpha = -\cos \left(180^{\circ} - \alpha\right)$$

 A tangente, sendo a razão entre seno e cosseno, resulta no oposto da tangente do suplemento:

$$an lpha = - an (180^\circ - lpha)$$

Exemplos

a)
$$\sin 135^\circ = \sin (180^\circ - 135^\circ) = \sin 45^\circ = \frac{\sqrt{2}}{2}$$

b)
$$\cos 150^\circ = -\cos \left(180^\circ - 150^\circ \right) = -\cos 30^\circ = -\frac{\sqrt{3}}{2}$$

c)
$$an 120^\circ = - an \left(180^\circ - 120^\circ
ight) = - an 60^\circ = -\sqrt{3}$$

Muitos fenômenos naturais seguem padrões senoidais, como as ondas do mar, os ritmos circadianos e até o canto de certos pássaros. Tudo isso pode ser modelado por funções seno e cosseno.

LEI DOS SENOS

Definição

Dado um triângulo qualquer *ABC*, as medidas de seus lados são proporcionais aos senos dos ângulos opostos correspondentes:

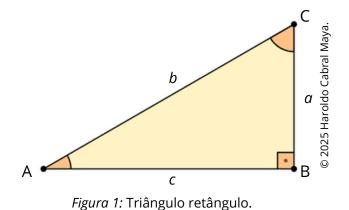
$$\frac{a}{\operatorname{sen} \widehat{A}} = \frac{b}{\operatorname{sen} \widehat{B}} = \frac{c}{\operatorname{sen} \widehat{C}}$$

Prova

Para demonstrar a Lei dos Senos, é necessário verificar sua validade em diferentes tipos de triângulos: **retângulos, acutângulos e obtusângulos.** Vamos seguir essa ordem:

Triângulo retângulo

Considere o triângulo retângulo ABC da figura 1, em que $\,\widehat{B}=90^\circ$:



Temos:

$$\operatorname{sen} \widehat{A} = \frac{a}{b} \Rightarrow b = \frac{a}{\operatorname{sen} \widehat{A}}$$

$$\mathrm{sen}\widehat{B} = 1 \xrightarrow[\mathrm{por}\ b]{\mathrm{multiplicando}} b \cdot \mathrm{sen}\widehat{B} = b \cdot 1 \mathrel{::} b = \frac{b}{\mathrm{sen}\widehat{B}}$$

$$\operatorname{sen} \widehat{C} = \frac{c}{b} \Rightarrow b = \frac{c}{\operatorname{sen} \widehat{C}}$$

Como todas as expressões resultam em *b*, temos:

$$\displaystyle \frac{a}{\mathop{
m sen} \widehat{A}} = rac{b}{\mathop{
m sen} \widehat{B}} = rac{c}{\mathop{
m sen} \widehat{C}}$$

Triângulo acutângulo

Considere o triângulo acutângulo ABC da figura 2:

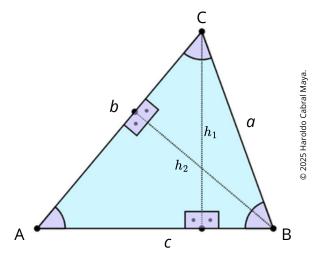


Figura 2: Triângulo acutângulo com alturas relativas aos lados b e c.

• A partir da altura h_1 , relativa ao lado c:

$$\operatorname{sen} \widehat{A} = \frac{h_1}{b} \Rightarrow h_1 = b \cdot \operatorname{sen} \widehat{A}$$

$$\operatorname{sen}\widehat{B} = \frac{h_1}{a} \Rightarrow h_1 = a \cdot \operatorname{sen}\widehat{B}$$

Igualando:

$$b \cdot \operatorname{sen} \widehat{A} = a \cdot \operatorname{sen} \widehat{B} : \frac{a}{\operatorname{sen} \widehat{A}} = \frac{b}{\operatorname{sen} \widehat{B}}$$

• A partir da altura h_2 , relativa ao lado c:

$$\operatorname{sen} \widehat{A} = rac{h_2}{c} \Rightarrow h_2 = c \cdot \operatorname{sen} \widehat{A}$$

$$\operatorname{sen} \widehat{C} = rac{h_2}{a} \Rightarrow h_2 = a \cdot \operatorname{sen} \widehat{C}$$

Consequentemente:

$$c \cdot \operatorname{sen} \widehat{A} = a \cdot \operatorname{sen} \widehat{C} : \frac{a}{\operatorname{sen} \widehat{A}} = \frac{c}{\operatorname{sen} \widehat{C}}$$

Assim, temos:

$$egin{aligned} rac{a}{\sin \widehat{A}} = rac{b}{\sin \widehat{B}} = rac{c}{\sin \widehat{C}} \end{aligned}$$

Triângulo obtusângulo

Considere agora o triângulo obtusângulo ABC, com $\widehat{B}>90^\circ$, conforme a figura 3:

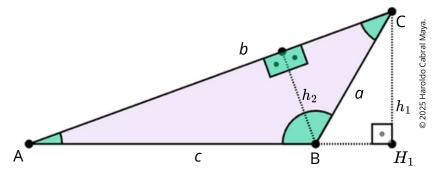


Figura 3: Triângulo obtusângulo com cotas de altura relativa ao lado b e c.

• A partir da altura h_2 , temos:

$$\operatorname{sen} \widehat{A} = \frac{h_2}{c} \Rightarrow h_2 = c \cdot \operatorname{sen} \widehat{A}$$

$$\operatorname{sen} \widehat{C} = \frac{h_2}{a} \Rightarrow h_2 = a \cdot \operatorname{sen} \widehat{C}$$

Logo:

$$c \cdot \operatorname{sen} \widehat{A} = a \cdot \operatorname{sen} \widehat{C} : \frac{a}{\operatorname{sen} \widehat{A}} = \frac{c}{\operatorname{sen} \widehat{C}}$$

• Considerando a altura h_1 , temos:

$$\operatorname{sen} \widehat{A} = rac{h_1}{b} \Rightarrow h_1 = b \cdot \operatorname{sen} \widehat{A}$$

$$\operatorname{sen} C\widehat{B}H_1 = \frac{h_1}{a} \Rightarrow h_1 = a \cdot \operatorname{sen} C\widehat{B}H_1$$

Como o seno de um ângulo obtuso é igual ao seno do seu suplemento:

$$h_1 = a \cdot \operatorname{sen} C\widehat{B}H_1 = a \cdot \operatorname{sen} \widehat{B}$$

Portanto

$$b \cdot \operatorname{sen} \widehat{A} = a \cdot \operatorname{sen} \widehat{B} : \frac{a}{\operatorname{sen} \widehat{A}} = \frac{b}{\operatorname{sen} \widehat{B}}$$

Assim,

$$\left(egin{array}{c} rac{a}{\sin \widehat{A}} = rac{b}{\sin \widehat{B}} = rac{c}{\sin \widehat{C}} \end{array}
ight)$$

MP3 e JPEG usam transformadas trigonométricas, como a Transformada Cosseno Discreta (DCT), para reduzir dados em frequências e reduzir o tamanho sem perder muita qualidade.

LEI DOS COSSENOS

Definição

Em qualquer triângulo *ABC*, o quadrado da medida de comprimento de um lado é igual à soma dos quadrados das medidas de comprimento dos outros dois lados menos duas vezes o produto das medidas de comprimento desses lados pelo cosseno do ângulo que eles formam.

$$\left(egin{array}{c} a^2 = b^2 + c^2 - 2bc \cdot \cos \widehat{A} \end{array}
ight)$$

$$b^2 = a^2 + c^2 - 2ac \cdot \cos \widehat{B}$$

$$c^2 = a^2 + b^2 - 2ab \cdot \cos \widehat{C}$$

Prova

Considere um triângulo qualquer ABC, como o representado na figura 4.

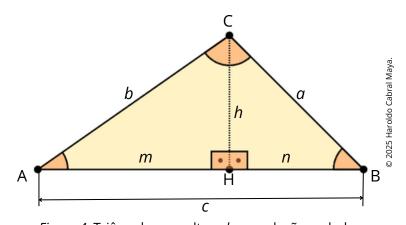


Figura 4: Triângulo com altura h em relação ao lado c.

Sem perda de generalidade, vamos provar a lei dos cossenos para o ângulo $\,A_{\,\cdot\,}\,$ Pela definição de cosseno:

$$\cos \widehat{A} = \frac{m}{b} \Rightarrow m = b \cdot \cos \widehat{A}$$

Como n=c-m, podemos substituir pela equação anterior, obtendo:

$$n = c - b \cdot \cos \widehat{A}$$

Pelo teorema de Pitágoras no triângulo retângulo AHC:

$$b^2 = h^2 + m^2 = h^2 + \left(b \cdot \cos \widehat{A}\right)^2 = h^2 + b^2 \cdot \cos^2 \widehat{A}$$

 $\therefore h^2 = b^2 - b^2 \cdot \cos^2 \widehat{A}$

Agora, pelo teorema de Pitágoras no triângulo retângulo BHC:

$$a^2 = h^2 + n^2 = h^2 + \left(c - b \cdot \cos \widehat{A}
ight)^2 = h^2 + c^2 - 2 \cdot b \cdot c \cdot \cos \widehat{A} + b^2 \cdot \cos^2 \widehat{A}$$

Substituido h2:

$$a^2 = \left(b^2 - b^2 \cdot \cos^2 \widehat{A}\right) + c^2 - 2 \cdot b \cdot c \cdot \cos \widehat{A} + b^2 \cdot \cos^2 \widehat{A}$$

$$= b^2 - b^2 \cdot \cos^2 \widehat{A} + c^2 - 2 \cdot b \cdot c \cdot \cos \widehat{A} + b^2 \cdot \cos^2 \widehat{A}$$

Portanto:

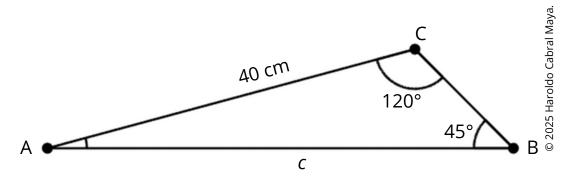
$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos \widehat{A}$$

As órbitas elípticas e rotações dos corpos celestes são descritas usando funções trigonométricas. A NASA usa intensamente essas funções para calcular trajetórias e correções de curso.

Exercícios Resolvidos

EXERCÍCIO 1

Dado o triângulo obtuso abaixo, calcule o valor de c.



Queremos determinar o valor de c. Sabemos que

$${\rm sen} \; 120^\circ = {\rm sen} \; \left(180^\circ - 120^\circ\right) = {\rm sen} \; 60^\circ$$

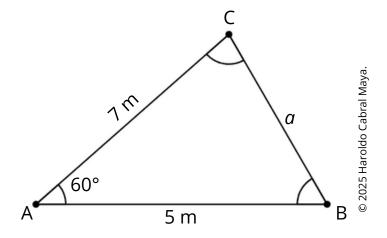
Aplicando a lei dos senos:

$$rac{40}{ ext{sen }45^\circ} = rac{c}{ ext{sen }120^\circ} \Rightarrow c = rac{40 \cdot ext{sen }120^\circ}{ ext{sen }45^\circ} = rac{40 \cdot ext{sen }60^\circ}{ ext{sen }45^\circ} =$$

Resposta:
$$c=20\sqrt{6}\,{\rm cm}$$

EXERCÍCIO 2

Qual o valor de a na figura abaixo?



Pela lei dos cossenos:

$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos \widehat{A}$$

Substituindo os valores

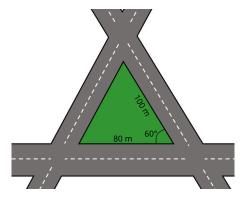
$$a^2 = 7^2 + 5^2 - 2 \cdot 7 \cdot 5 \cdot \cos 60^\circ = 49 + 25 - \cancel{10}^{35} \cdot \frac{1}{\cancel{1}^{1}} = 74 - 35 = 39$$

Resposta: $a=\sqrt{39}$ m

EXERCÍCIO 3

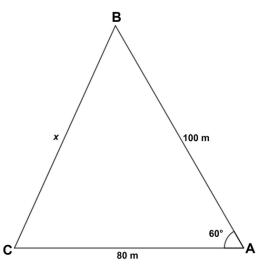
Uma praça de formato triangular, localizada entre três ruas, está representada na figura seguinte. O prefeito da cidade deseja plantar mudas de um mesmo tipo de arbusto ao longo de todo o perímetro dessa praça, seguindo a orientação de que cada muda deve ser posicionada exatamente a 50 cm de distância da seguinte. Considerando que o plantio começará em um vértice e seguirá até completar o contorno total da praça, qual é o número mínimo de mudas que precisam ser adquiridas para realizar o projeto? Considere

 $\sqrt{21}pprox4,6$.



Resolução

Para determinarmos o número de mudas que devem ser adquiridas devemos determinar a medida do lado faltante. Observe o triângulo abaixo:



No triângulo ABC podemos aplicar a lei dos cossenos para determinar a medida x:

$$x^2 = 100^2 + 80^2 - 2 \cdot 100 \cdot 80 \cdot \cos 60^\circ$$
 $= 10\,000 + 6\,400 - 16\,000 \cdot \frac{1}{2}$
 $= 16\,400 - 8\,000$
 $= 8\,400$
 \therefore
 $x = \sqrt{8400}$
 $= \sqrt{2^4 \cdot 3 \cdot 5^2 \cdot 7}$
 $= 2^2 \cdot 5\sqrt{3 \cdot 7}$
 $= 20 \cdot \sqrt{21}$
 $\approx 20 \cdot 4,6$
 $= 92 \text{ metros.}$

Portanto, o contorno da praça tem, aproximadamente, 100 + 92 + 80 = 272 m de comprimento. Como cada muda deve ser plantada a 50 cm de distância uma da outra, a cada metro deve-se plantar 2 mudas, assim, a prefeitura deverá adquirir $2 \cdot 272 = 544$ mudas.

Material Extra

Matemática em contexto: Trigonometria e sistemas lineares. (DANTE)

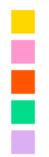
Capítulo 1: Trigonometria.

• Formalizando a definição de seno e cosseno de ângulos obtusos (p. 29 - 37).

Prisma matemática: geometria e trigonometria. (BONJORNO)

Capítulo 2: Trigonometria no triângulo.

- Seno e cosseno de ângulos suplementares (p. 72).
- Lei dos cossenos (p. 73 75).
- Lei dos senos (p. 76 78).

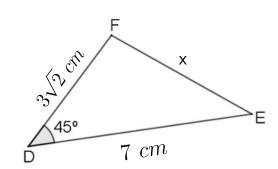


Atividades

ATIVIDADE 1

Observe cada triângulo e calcule o valor de x.

A) C X 5 cm X A 60° 30° B



ATIVIDADE 2

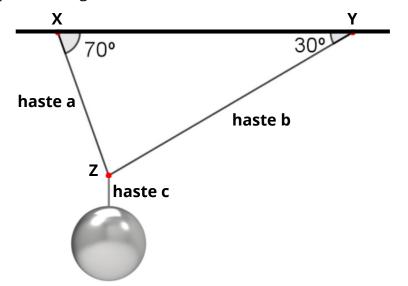
Em um triângulo que não é retângulo, o estudo das relações entre lados e ângulos pode ser feito com o auxílio da lei dos senos e da lei dos cossenos. Cada uma dessas leis é mais adequada em determinadas situações, dependendo dos elementos conhecidos do triângulo.

B)

Dentre as alternativas abaixo, marque aquela que está **incorreta**:

- A) A lei dos senos é indicada quando se conhece um ângulo e o lado oposto a ele, juntamente com outro ângulo ou lado.
- B) A lei dos cossenos é recomendada quando se conhece dois lados e o ângulo entre eles, ou os três lados do triângulo, quando se deseja encontrar os ângulos.
- C) A lei dos senos pode ser aplicada em qualquer triângulo, desde que conheçamos apenas os três lados, mesmo sem saber os ângulos.
- D) A lei dos senos também pode ser usada quando se conhece dois ângulos e um lado, já que o terceiro ângulo pode ser facilmente determinado.
- E) A lei dos cossenos permite encontrar ângulos quando todos os lados do triângulo são conhecidos.

Uma esfera está em equílibrio pendurada por três hastes de aço, conforme o esquema a seguir:



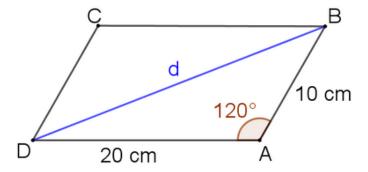
Dados: $sen \ 30^{\circ} = 0, 5$ $cos \ 30^{\circ} \cong 0, 87$ $sen \ 70^{\circ} \cong 0, 94$ $cos \ 70^{\circ} \cong 0, 34$ $sen \ 80^{\circ} \cong 0, 98$ $cos \ 80^{\circ} \cong 0, 17$

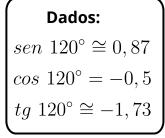
As hastes **a** e **b** estão conectadas a haste **c** por uma de suas pontas. As outras pontas, distantes 80 cm uma da outra, estão fixadas numa barra metálica. Com base nas informações:

- A) Qual é a medida do ângulo interno no vértice Z.
- B) Determine os comprimentos das hastes **a** e **b**.

ATIVIDADE 4

Lucas desenhou em seu caderno um paralelogramo e, utilizando um transferidor, identificou que o seu ângulo obtuso mede 120°, conforme mostra a imagem abaixo.





Com base nessas informações, qual é a medida da diagonal "d" desse paralelogramo? (Use: $\sqrt{7} \cong 2,65$).

ATIVIDADE 5

No triângulo ABC abaixo $\,\overline{AC}=5\,cm; \overline{BC}=3\,cm; \overline{AB}=6\,cm\,\,$ e $\,\,m(\hat{A})=\alpha\,$.



Lembre-se:

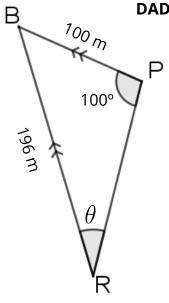
Se for necessário consulte a tabela trigonométrica, para definir o valor do ângulo $\, \alpha \,$

Com base nas informações, podemos dizer que a medida do ângulo $\, \alpha \,$ é :

- A) 0,86°
- B) 20°
- C) 25°
- D) 30°
- E) 60°

ATIVIDADE 6

Em uma operação de resgate no mar, duas embarcações partiram de pontos diferentes em direção ao mesmo local. O navio Alpha partiu do ponto P e navegou 100 metros em linha retilínea até o ponto B, onde estava o náufrago. No mesmo instante, o navio Bravo, muito mais veloz, partiu do ponto R, a 196 metros de B, também em linha retilínea, e chegou ao ponto B no mesmo momento que o navio Alpha. No momento da partida, o capitão do navio Alpha observava o ponto B e a posição do navio Bravo sob um ângulo de 100°, como mostra o esquema abaixo.



DADOS: $sen 100^{\circ} \cong 0.98$; $cos 100^{\circ} \cong -0.17$; $tg 100^{\circ} \cong -5.67$.

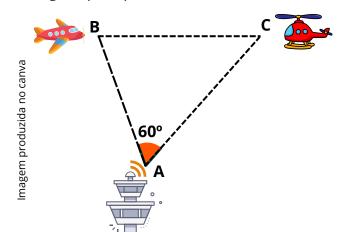
Com base nessas informações, qual é a medida do ângulo θ , sob o qual o capitão do navio Bravo observava simultaneamente, no instante da partida, o navio Alpha e o ponto de resgate B?

- A) 30°
- B) 45°
- C) 60°
- D) 100°
- E) 198°

ATIVIDADE 7

Um radar terrestre, localizado no solo do Aeroporto de Vitória (ponto A), detectou simultaneamente a presença de um avião no ponto B e de um helicóptero no ponto C. Ambos estavam em movimento, aproximando-se um do outro em trajetórias retilíneas.

No instante da observação, o radar indicava que o avião estava a 30 km da torre de controle, enquanto o helicóptero encontrava-se a 80 km de distância da mesma. Nesse momento, ambos são visualizados pelo radar sob um ângulo de 60°, indicado na figura pelo ponto A, conforme ilustrado a seguir.



Diante dessa situação, a torre de controle calculou a distância entre o avião e o helicóptero e alertou imediatamente o comandante do helicóptero para realizar uma mudança de rota, a fim de evitar uma possível colisão.

Com base nas informações fornecidas, qual era a distância entre o avião e o helicóptero no instante da observação feita pela torre?

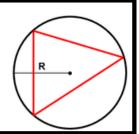
ATIVIDADE 8

Uma das relações que pode ser aplicada a qualquer triângulo inscrito em uma circunferência de raio **R** envolve a **Lei dos Senos**:

$$2r = \frac{a}{\operatorname{sen} \hat{A}} = \frac{b}{\operatorname{sen} \hat{B}} = \frac{c}{\operatorname{sen} \hat{C}}$$

Determine o raio de uma circunferência circunscrita ao triângulo ABC, cujo lado **a** mede 45 mm e o ângulo $\hat{\bf A}$, oposto ao lado **a**, é de 30°

Triângulo **inscrito** na circunferência ou circunferência **circunscrita** ao triângulo



O mapa a seguir contém a localização de três pontos turísticos da Lagoa Juparanã, situada em Linhares-ES. Nele, foi apresentado um modelo matemático, para destacar algumas medidas. (**Dado:** $cos\ 51^{\circ} \cong 0,6293$)

Fonte: Adaptado de https://google.com/maps

Com base nas informações apresentadas, podemos estimar que a menor distância entre a Lagoa Lençol Grande e a Praia do Retiro está compreendida entre:

- A) 2 e 3 km
- B) 3 e 4 km
- C) 4 e 5 km
- D) 5 e 6 km
- E) 6 e 7 km

ATIVIDADE 10

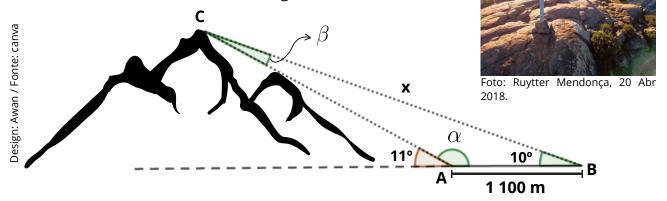
O Pico da Bandeira é um dos pontos mais altos do Brasil, localizado na divisa entre os estados de Minas Gerais e Espírito Santo, na Serra do Caparaó — uma cadeia montanhosa da região Sudeste do país. Com uma altitude de 2 892 metros, é o segundo ponto mais elevado do território nacional, ficando atrás apenas do Pico da Neblina, situado na Amazônia.

Fonte: Disponível em: https://setur.es.gov.br/Not%C3%ADcia/pico-da-bandeira-descobrindo-o-gigante-capixaba. Acessado em: 25/04/2025.

Durante uma expedição ao Parque Nacional do Caparaó, Marcos, que é topógrafo, decidiu estimar a distância entre o cume do Pico da Bandeira e a propriedade da pousada onde estava hospedado. Para isso, utilizou um teodolito — instrumento óptico usado para medições angulares, muito comum em levantamentos topográficos.

Inicialmente, Marcos posicionou-se em um ponto chamado A, de onde observou a cruz localizada no cume do pico, registrando um ângulo de elevação de 11°. Em seguida, caminhou 1 100 metros em linha reta, afastando-se do pico até um novo ponto, denominado B, de onde observou o mesmo ponto no cume, agora sob um ângulo de elevação de 10°.

A situação descrita pode ser representada por um triângulo formado pelos pontos A, B e o ponto C (o topo do Pico da Bandeira), conforme ilustrado a seguir:



Com base no modelo matemático apresentado, responda: A) Quais são os valores dos ângulos α e β no triângulo formado?

B) Utilizando uma calculadora, calcule a distância aproximada (em linha reta) representada por *x*, entre o ponto B (posição final de Marcos) e o ponto C (o cume do Pico da Bandeira).

Dados: $sen 1^{\circ} \cong 0,0175; \ sen 10^{\circ} \cong 0,1736; \ sen 11^{\circ} \cong 0,1908; \ sen 169^{\circ} \cong 0,1908;$

Tabela de Relações Trigonométricas

Ângulo	Seno	Cosseno	Tangente	Ângulo	Seno	Cosseno	Tangente	Ângulo	Seno	Cosseno	Tangente
1°	0,0175	0,9998	0,0175	31°	0,5150	0,8572	0,6009	61°	0,8746	0,4848	1,8040
2°	0,0349	0,9994	0,0349	32°	0,5299	0,8480	0,6249	62°	0,8829	0,4695	1,8807
3°	0,0523	0,9986	0,0524	33°	0,5446	0,8387	0,6494	63°	0,8910	0,4540	1,9626
4°	0,0698	0,9976	0,0699	34°	0,5592	0,8290	0,6745	64°	0,8988	0,4384	2,0503
5°	0,0872	0,9962	0,0875	35°	0,5736	0,8192	0,7002	65°	0,9063	0,4226	2,1445
6°	0,1045	0,9945	0,1051	36°	0,5878	0,8090	0,7265	66°	0,9135	0,4067	2,2460
7°	0,1219	0,9925	0,1228	37°	0,6018	0,7986	0,7536	67°	0,9205	0,3907	2,3559
8°	0,1392	0,9903	0,1405	38°	0,6157	0,7880	0,7813	68°	0,9272	0,3746	2,4751
9°	0,1564	0,9877	0,1584	39°	0,6293	0,7771	0,8098	69°	0,9336	0,3584	2,6051
10°	0,1736	0,9848	0,1763	40°	0,6428	0,7660	0,8391	70°	0,9397	0,3420	2,7475
11°	0,1908	0,9816	0,1944	41°	0,6561	0,7547	0,8693	71°	0,9455	0,3256	2,9042
12°	0,2079	0,9781	0,2126	42°	0,6691	0,7431	0,9004	72°	0,9511	0,3090	3,0777
13°	0,2250	0,9744	0,2309	43°	0,6820	0,7314	0,9325	73°	0,9563	0,2924	3,2709
14°	0,2419	0,9703	0,2493	44°	0,6947	0,7193	0,9657	74°	0,9613	0,2756	3,4874
15°	0,2588	0,9659	0,2679	45°	0,7071	0,7071	1,0000	75°	0,9659	0,2588	3,7321
16°	0,2756	0,9613	0,2867	46°	0,7193	0,6947	1,0355	76°	0,9703	0,2419	4,0108
17°	0,2924	0,9563	0,3057	47°	0,7314	0,6820	1,0724	77°	0,9744	0,2250	4,3315
18°	0,3090	0,9511	0,3249	48°	0,7431	0,6691	1,1106	78°	0,9781	0,2079	4,7046
19°	0,3256	0,9455	0,3443	49°	0,7547	0,6561	1,1504	79°	0,9816	0,1908	5,1446
20°	0,3420	0,9397	0,3640	50°	0,7660	0,6428	1,1918	80°	0,9848	0,1736	5,6713
21°	0,3584	0,9336	0,3839	51°	0,7771	0,6293	1,2349	81°	0,9877	0,1564	6,3138
22°	0,3746	0,9272	0,4040	52°	0,7880	0,6157	1,2799	82°	0,9903	0,1392	7,1154
23°	0,3907	0,9205	0,4245	53°	0,7986	0,6018	1,3270	83°	0,9925	0,1219	8,1443
24°	0,4067	0,9135	0,4452	54°	0,8090	0,5878	1,3764	84°	0,9945	0,1045	9,5144
25°	0,4226	0,9063	0,4663	55°	0,8192	0,5736	1,4281	85°	0,9962	0,0872	11,4301
26°	0,4384	0,8988	0,4877	56°	0,8290	0,5592	1,4826	86°	0,9976	0,0698	14,3007
27°	0,4540	0,8910	0,5095	57°	0,8387	0,5446	1,5399	87°	0,9986	0,0523	19,0811
28°	0,4695	0,8829	0,5317	58°	0,8480	0,5299	1,6003	88°	0,9994	0,0349	28,6363
29°	0,4848	0,8746	0,5543	59°	0,8572	0,5150	1,6643	89°	0,9998	0,0175	57,2900
30°	0,5000	0,8660	0,5774	60°	0,8660	0,5000	1,7321	90°	1,0000	0,0000	-

Referências

MATERIAL ESTRUTURADO

BONJORNO, José Roberto; JÚNIOR, Ruy Giovanni Júnior; SOUZA, Paulo Roberto Câmara. **Prisma matemática: geometria e trigonometria. ensino médio - área do conhecimento: matemática e suas tecnologias.** 1ª ed. São Paulo: FTD, 2020.

CHAVANTE, Eduardo; PRESTES, Diego. **Quadrante matemática, 1o ano : ensino médio.** 1ª ed. São Paulo: Edições SM, 2016.

DANTE, Luiz Roberto; VIANA, Fernando. **Matemática em contexto: trigonometria e sistemas lineares.** 1ª ed. São Paulo: Ática, 2020.

DOLCE, Osvaldo; POMPEO, José Nicolau. **Fundamentos de matemática elementar 9: geometria plana**. 9. ed. São Paulo: Atual, 2013.

ATIVIDADES

BONJORNO, José Roberto; JÚNIOR, Ruy Giovanni Júnior; SOUZA, Paulo Roberto Câmara. **Prisma matemática: geometria e trigonometria**. ensino médio - área do conhecimento: matemática e suas tecnologias. 1ª ed. São Paulo: FTD, 2020.

DANTE, Luiz Roberto; VIANA, Fernando. **Matemática em contexto: trigonometria e sistemas lineares**. 1ª ed. São Paulo: Ática, 2020.

MENDONÇA, Ruytter. **Pico da Bandeira, Parque Nacional do Caparaó, Minas Gerais**. 20 Abr 2018. Disponível em: https://trilhandomontanhas.com/fotos/pico-da-bandeira-parque-nacional-do-caparao-minas-gerais/. Acessado em: 22/04/2025.

SETUR, Secretaria de Estado do Turismo. Texto de Eduardo Braz. **Pico da Bandeira: descobrindo o gigante capixaba.** 23/02/2023. Disponível em: https://setur.es.gov.br/Not%C3%ADcia/pico-da-bandeira-descobrindo-o-gigante-capixaba>. Acessado em: 25/04/2025.

SOUZA, Joamir Roberto de. **Multiverso Matemática: Sequências e trigonometria. Ensino Médio**. 1ª ed. São Paulo: FTD, 2020.