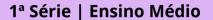


Material 24/03 a 28/0 Estruturado

SUBSECRETARIA DE EDUCAÇÃO BÁSICA E PROFISSIONAL

GERÊNCIA DE CURRÍCULO DA EDUCAÇÃO BÁSICA



MATEMÁTICA

GRANDEZAS DIRETAMENTE E INVERSAMENTE PROPORCIONAIS

HABILIDADE(S)	EXPECTATIVA(S) DE APRENDIZAGEM	DESCRITOR(ES) DO PAEBES
EF09MA08 - Resolver e elaborar problemas que envolvam relações de proporcionalidade direta e inversa entre duas ou mais grandezas, inclusive escalas, divisão em partes proporcionais e taxa de variação, em contextos socioculturais, ambientais e de outras áreas.	 Identificar as relações de proporcionalidade em escalas, divisões em parte proporcionais ou taxas de variação de duas grandezas. Resolver problemas que envolvam relações de proporcionalidade direta e inversa entre duas grandezas. Elaborar problemas que envolvam relações de proporcionalidade direta entre duas grandezas. 	D039_M Utilizar proporcionalidade entre duas grandezas na resolução de problema.

Contextualização

De acordo com uma pesquisa realizada em 2018 pela Sociedade Brasileira de Cardiologia (SBC), quatro em cada dez adultos brasileiros apresentam níveis elevados de colesterol, e quase 70% só realizaram o exame após os 45 anos de idade. O levantamento, realizado com mais de 800 pessoas de todo o Brasil, revela um dado preocupante sobre a saúde da população brasileira.

Hospital Estadual de Urgência e Emergência (HEUE), em Vitória, nutricionistas da unidade alertaram colaboradores da unidade e acompanhantes de pacientes sobre a importância de manter uma alimentação saudável para uma melhor qualidade de vida.

Isso destaca a importância de uma alimentação balanceada e a necessidade de promover a educação nutricional como uma ferramenta essencial para prevenir doenças cardíacas.

O conceito de *grandezas diretamente proporcionais* pode ser aplicado, por exemplo, quando falamos sobre a relação entre consumo de frutas e aumento de fibras na dieta. Se cada fruta consumida diariamente fornece em média 4 gramas de fibras, o total de fibras consumidas aumenta proporcionalmente ao número de frutas ingeridas.

Assim, como a alimentação balanceada é muito importante para a saúde cardíaca, a pratica de exercícios físicos é fundamental para o controle dos níveis de colesterol no sangue.

Então, considere uma pessoa que queira controlar seus níveis de colesterol e comece a praticar caminhadas e ela estabelece caminhar uma distância fixa. Agora pense, se ela aumentar a velocidade da caminhada, menor será o tempo necessário para percorrer a distância. Portanto, as grandezas velocidade e tempo são exemplos de *grandezas inversamente proporcionais*.

Entender e aplicar esses conceitos matemáticos pode ajudar a construir hábitos saudáveis e a prevenir problemas relacionados à saúde. Neste material, será abordado sobre as grandezas diretamente e inversamente proporcionais e como utilizar a proporcionalidade entre duas grandezas na resolução de problemas.

BONS ESTUDOS!

Conceitos e Conteúdos

No material anterior, aprendemos o que são grandezas proporcionais, agora iremos explorar mais sobre o assunto e revisar sobre as grandezas diretamente e inversamente proporcionais. Mas antes precisamos compreender o conceito de proporcionalidade.

PROPORCIONALIDADE

Alguns estudantes passaram na papelaria, antes da aula e viram o quadro da promoção ao lado, 3 canetas por 10 reais, os estudantes tiraram conclusões usando a ideia de *proporcionalidade*. Veja a conversa deles:

Se o preço de 3 canetas é 10 reais, então o preço de 6 canetas é 20 reais.

Sabendo que 1 pacote tem 3 canetas, se eu comprar 4 pacotes, ficarei com 12 canetas.

Para ter 18 canetas, vou precisar comprar 6 pacotes, iguais a este.

1 pacote custa 10 reais, se eu comprar 4 pacotes vou pagar 40 reais.

Se com 10 reais dá pra comprar 1 pacote, então, com 30 reais dá para comprar 3 pacotes de canetas.

No exemplo da promoção da papelaria, "3 canetas por 10 reais", os estudantes perceberam que a relação entre a quantidade de canetas e o preço segue um padrão fixo. Isso significa que, ao dobrar ou triplicar a quantidade de canetas, o preço correspondente também será dobrado ou triplicado, mantendo a mesma razão.

A *proporcionalidade* é um conceito matemático que descreve a relação entre duas grandezas que variam de forma que a *razão* entre elas permanece *constante*. Em outras palavras, quando uma grandeza aumenta ou diminui, a outra também muda na mesma proporção, mantendo sempre a mesma relação.

PROPORCIONALIDADE E RAZÃO

Carla decidiu preparar suco utilizando um concentrado líquido. Veja as informações no rótulo da embalagem:

Para organizar melhor os dados, Carla criou uma tabela indicando a quantidade de colheres de sopa necessárias para diferentes números de copos de água.

QUANTIDADE DE COPOS DE ÁGUA	QUANTIDADE DE COLHERES DO SUCO CONCETRADO
1	2
2	4
3	6
4	8

Neste caso, estamos relacionando a quantidade de copos de água com a quantidade de colheres de sopa de concentrado. A *razão* entre essas quantidades pode ser expressa como "1 para 2" ou "1÷2"

Indicamos essa razão assim: 1 em 2 ou
$$1 \div 2$$
 ou $\frac{1}{2}$

Ao observar a tabela, percebemos que:

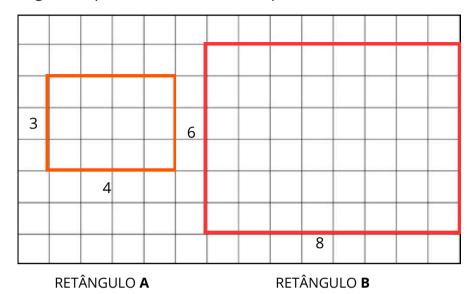
- Quando dobramos o número de copos de água, a quantidade de colheres de sopa também dobra.
- Quando triplicamos o número de copos de água, a quantidade de colheres de sopa também triplica.

E assim por diante.

Essas observações indicam que as **grandezas quantidade de copos de água** e **quantidade de colheres de suco concentrado** são **grandezas proporcionais**.

PROPORÇÃO

Observe os retângulos representados na malha quadriculada:



- A razão entre as medidas de comprimento da altura do retângulo **B** é $\frac{3}{6}=\frac{1}{2}$
- A razão entre as medidas de comprimento da largura do retângulo **A** e da largura do retângulo **B** é $\frac{4}{8}=\frac{1}{2}$

Definimos proporção como a igualdade de 2 razões.

Assim, no exemplo acima temos a seguinte proporção: $\frac{3}{6}=\frac{4}{8}$ Lemos: 3 está para 6, assim como 4 está para 8.

Os números 3, 6, 4 e 8 são chamados de **termos** da proporção. O primeiro e o último termos (3 e 8, neste caso) são os **extremos da proporção**, e os outros 2 termos (6 e 4, neste caso) são os **meios da proporção**.

PROPRIEDADE FUNDAMENTAL DAS PROPORÇÕES

Observe o que ocorre com estas proporções.

$$\frac{3}{6} \times \frac{4}{8} \rightarrow \underbrace{3 \cdot 8}_{24} = \underbrace{6 \cdot 4}_{24} \qquad \qquad \frac{3}{7} \times \underbrace{\frac{6}{14}} \rightarrow \underbrace{3 \cdot 14}_{42} = \underbrace{7 \cdot 6}_{42}$$

O que ocorreu com essas proporções ocorre com todas as proporções.

Em toda proporção, o produto dos extremos é igual ao produto dos meios.

Assim, se
$$\frac{a}{b} = \frac{c}{d}$$
 é uma proporção, então $a \cdot d = b \cdot c$.

PROPORCIONALIDADE ENTRE GRANDEZAS

No material da semana passada vimos o que são grandezas. Vamos relembrar:

GRANDEZA: é tudo aquilo que pode ser medido e possibilita que tenhamos características baseadas em informações numéricas e/ou geométricas.

Exemplos de grandezas: comprimento, tempo, massa, velocidade, área, temperatura...

GRANDEZAS DIRETAMENTE PROPORCIONAIS

Uma costureira está fazendo bermudas encomendadas por uma loja. Ela fez 2 bermudas com um tecido com medida de comprimento de 1,40 m. Agora ela quer saber de quantos metros de tecido ela precisa para fazer 6 bermudas. Veja o raciocínio dela.

Se para fazer 2 bermudas gasto 1,40 m de tecido, então, como 6 é o triplo de 2, gastarei o triplo de 1,40 m, pois

 $3 \cdot 1,40 = 4,20$

Em casos como esse, dizemos que as grandezas são diretamente proporcionais.

• **Grandezas diretamente proporcionais:** são aquelas em que o aumento de uma provoca um aumento proporcional na outra, ou a diminuição de uma resulta em uma diminuição proporcional na outra.

Veja os exemplos:

- A *quantidade de energia gerada* por painéis solares é *diretamente proporcional* à *área* ocupada por eles. Se uma instalação de 100 m² de painéis solares gera 5 000 kWh por mês, ao aumentar a área para 200 m², a produção de energia também dobrará para 10 000 kWh, considerando as mesmas condições de incidência solar.
- Em comunidades indígenas, o *número de peças* de cerâmica produzidas está *diretamente proporcional* à *quantidade de argila* disponível. Por exemplo, se uma família indígena tem o dobro da quantidade de argila, pode produzir o dobro de peças, considerando o mesmo padrão de trabalho.
- O *consumo diário de água* de uma comunidade rural é *diretamente proporcional* ao *número de pessoas que vivem nela*. Por exemplo, se uma vila com 50 habitantes consome 5 000 litros de água por dia, uma vila com 100 habitantes, nas mesmas condições, consumirá 10 000 litros por dia.

GRANDEZAS INVERSAMENTE PROPORCIONAIS

Imagine um percurso feito de 3 maneiras diferentes: de bicicleta, de patinete elétrico e de carro.

Pessoa andando de bicicleta.

Pessoa andando de patinete elétrico.

Pessoa andando de carro.

- De *bicicleta*, com a velocidade média de 15 km/h, Mário gastou 120 minutos para completar o percurso.
- De *patinete elétrico*, com a velocidade média de 30 km/h, Aline gastou 60 minutos para completar o mesmo percurso.
- De *carro*, com velocidade média de 90 km/h, Luciana gastou 20 minutos para completar o mesmo percurso.

Observe que o veículo com medida de velocidade menor gastou intervalo de tempo maior. A *velocidade* e o *intervalo de tempo não* são grandezas diretamente proporcionais. Observe que a medida de <u>velocidade dobrou</u> de 15 km/h para 30 km/h, e o <u>intervalo de tempo foi reduzido à metade</u> (passou de 120 minutos para 60 minutos).

Quando o valor de uma grandeza é multiplicado por um número e o valor da outra grandeza é dividido pelo mesmo número, dizemos que as **grandezas são inversamente proporcionais**.

 Grandezas inversamente proporcionais: s\u00e3o aquelas em que o aumento de uma provoca uma diminui\u00e7\u00e3o proporcional na outra, e vice-versa. Isso significa que o produto entre os valores correspondentes das duas grandezas permanece constante.

Veja os exemplos:

- Se uma fábrica precisa produzir um lote de produtos e o número de máquinas disponíveis aumenta, o tempo necessário para concluir a produção diminui, ou seja as grandezas **tempo** e **quantidade de máquinas**, são **inversamente proporcionais**.
- Ao comprar por atacado temos que o preço unitário dos produtos diminui conforme a quantidade adquirida aumenta. Portanto as grandezas *preço* e *quantidade de produtos comprados*, são inversamente proporcionais.

REGRA DE TRÊS SIMPLES

A **regra de três** é uma técnica matemática que permite resolver problemas envolvendo a relação entre **grandezas proporcionais**, seja **diretamente** ou **inversamente**. Ela é amplamente utilizada para encontrar valores desconhecidos a partir de uma relação de proporcionalidade entre outras grandezas.

Vamos ver com exemplos como aplicar a regra de três:

Exemplo 1: Consumo de água em uma comunidade

Uma comunidade rural utiliza 5 mil litros de água para atender 10 famílias. Quantos litros de água serão necessários para atender 15 famílias?

Passo 1: Identificar as grandezas

- Grandeza 1: Número de famílias.
- Grandeza 2: Consumo de água (em litros).

Passo 2: Verificar a relação entre as grandezas

A relação é diretamente proporcional, porque quanto maior o número de famílias, maior será o consumo de água.

Passo 3: Organizar os dados em uma tabela

NÚMERO DE FAMÍLIAS.	CONSUMO DE ÁGUA (L)
10	5000
15	х

Esse número que precisamos descobrir é chamado de <u>quarta</u> proporcional. Ele recebe esse nome pois já temos 3 números e precisamos descobrir o quarto. O procedimento utilizado é conhecido por regra de três simples.

Passo 4: Resolver a proporção

Como as grandezas são diretamente proporcionais, podemos escrever:

$$\frac{10}{5000}$$
 $\stackrel{\cancel{>}}{=}$ $\frac{15}{x}$ Usando a propriedade fundamental das proporções

$$10 \ x = 15 \cdot 5000 \implies x = \frac{75000}{10} \implies x = 7500$$

Resultado:

A comunidade precisará de 7 500 litros de água para atender 15 famílias.

REGRA DE TRÊS SIMPLES

Exemplo 2: Velocidade da Internet e Tempo de Download

Problema: Um arquivo de 600 MB leva 4 minutos para ser baixado com uma velocidade de 20 Mbps. Quanto tempo levaria para baixar o mesmo arquivo se a velocidade da internet fosse de 40 Mbps?

Passo 1: Identificar as grandezas

- Grandeza 1: Velocidade da internet (em Mbps)
- Grandeza 2: Tempo de download (em minutos)

Passo 2: Verificar a relação entre as grandezas

Essas grandezas são inversamente proporcionais, pois, ao aumentar a velocidade, o tempo necessário para baixar o arquivo é diminuído.

Passo 3: Organizar os dados em uma tabela

VELOCIDADE DA INTERNET (EM MBPS)	TEMPO DE DOWNLOAD (EM MINUTOS)
20	4
40	Х

Passo 4: Resolver a proporção

Como as grandezas são inversamente proporcionais, devemos inverter uma das razões e assim, podemos escrever:

$$rac{40}{20}
ot
ge = rac{4}{x}$$
 Usando a propriedade fundamental das proporções

$$40x=20\cdot 4 \Longrightarrow \ x=rac{80}{40} \implies x=2$$

Resultado:

Se a velocidade da internet fosse de 40 Mbps, o tempo necessário para baixar o arquivo de 600 MB seria de **2 minutos**.

Exercícios Resolvidos

EXERCÍCIO 1

(Enem) Uma mãe recorreu à bula para verificar a dosagem de um remédio que precisava dar a seu filho. Na bula, recomendava-se a seguinte dosagem: 5 gotas para cada 2 kg de massa corporal a cada 8 horas. Se a mãe ministrou corretamente 30 gotas do remédio a seu filho a cada 8 horas, então a massa corporal dele é de:

B) 16 kg.

C) 24 kg.

D) 36 kg.

E) 75 kg.

SOLUÇÃO

Passo 1: Identificar as grandezas

As grandezas são:

- Número de gotas do remédio (gotas)
- Massa corporal da criança (kg)

Passo 2: Verificar a relação entre as grandezas

A relação é diretamente proporcional, pois, quanto maior a massa corporal, maior será a quantidade de gotas administradas.

Passo 3: Organizar os dados em uma tabela

NÚMERO DE GOTAS DO REMÉDIO	MASSA CORPORAL DA CRIANÇA (KG)
5	2
30	х

Passo 4: Resolver a proporção

Como as grandezas são diretamente proporcionais, podemos escrever:

$$\frac{5}{2} = \frac{30}{x}$$

Usando a propriedade fundamental das proporções

$$5 \ x = 2 \cdot 30 \implies x = \frac{60}{5} \implies x = 12$$

A massa corporal da criança é de 12 kg. Resposta: alternativa A.

EXERCÍCIO 2

(Enem) Em uma corrida automobilística, os carros podem fazer paradas nos boxes para efetuar trocas de pneus. Nessas trocas, o trabalho é feito por um grupo de três pessoas em cada pneu. Considere que os grupos iniciam o trabalho no mesmo instante, trabalham à mesma velocidade e cada grupo trabalha em um único pneu.

Considere que os grupos iniciam o trabalho no mesmo instante, trabalham à mesma velocidade e cada grupo trabalha em um único pneu. Com os quatro grupos completos, são necessários 4 segundos para que a troca seja efetuada. O tempo gasto por um grupo para trocar um pneu é inversamente proporcional ao número de pessoas trabalhando nele. Em uma dessas paradas, um dos trabalhadores passou mal, não pôde participar da troca e nem foi substituído, de forma que um dos quatro grupos de troca ficou reduzido. Nessa parada específica, com um dos grupos reduzido, qual foi o tempo gasto, em segundo, para trocar os quatro pneus? A) 6 segundos

- B) 5,7 segundos
- C) 5 segundos
- D) 4,5 segundos
- E) 4,4 segundos

SOLUÇÃO

Passo 1: Identificar as grandezas

As grandezas são:

- Quantidade de trabalhadores por grupo
- Tempo de troca final (segundos)

Passo 2: Verificar a relação entre as grandezas

O tempo gasto por um grupo para trocar um pneu é inversamente proporcional ao número de pessoas trabalhando.

Passo 3: Organizar os dados em uma tabela

Qt. de trabalhadores por grupo Tempo de troca final (segundos) 3 4 2 x

Passo 4: Resolver a proporção

Como as grandezas são inversamente proporcionais, devemos inverter uma das razões e assim, podemos escrever: $2x=4\cdot 3$

$$\frac{2}{3} = \frac{4}{\pi}$$

Usando a propriedade fundamental das proporções

$$2x = 12$$
$$x = \frac{12}{2} = 6$$

O grupo que terá 2 trabalhadores fará a troca em 6 segundos

Agora, temos a seguinte situação:

- 3 grupos com 3 pessoas cada (tempo de 4 segundos para cada grupo).
- 1 grupo com 2 pessoas (tempo de 6 segundos para esse grupo).
- Os grupos trabalham simultaneamente, então o tempo total para trocar os quatro pneus será determinado pelo grupo que leva mais tempo. O grupo com 2 pessoas leva 6 segundos, portanto, o tempo total para trocar todos os pneus será 6 segundos. *Resposta: alternativa A.*

Material Extra

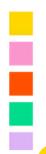
LIVRO MATEMÁTICA EM CONTEXTOS -FUNÇÃO AFIM E FUNÇÃO QUADRÁTICAS

• Nas páginas 47 a 49, as atividades ali apresentadas podem ser usadas como aprofundamento dos estudos grandezas diretamente proporcionais.

SAIBA MAIS APONTANDO O CELULAR PARA O QR CODE ABAIXO OU CLIQUE NO BOTÃO.

NÚMEROS DIRETAMENTE E INVERSAMENTE PROPORCIONAIS

REGRA DE TRÊS SIMPLES



Atividades

ATIVIDADE 1

Rafael está planejando uma festa e precisa comprar refrigerante. Ele sabe que cada garrafa de 2 litros de refrigerante serve 5 pessoas. Se ele espera 75 convidados para a festa, quantas garrafas de refrigerante Rafael deve comprar?

- A) 10 garrafas
- B) 15 garrafas
- C) 20 garrafas
- D) 25 garrafas
- E) 30 garrafas

ATIVIDADE 2

José está monitorando o consumo de água de sua casa para reduzir a conta. Ele sabe que cada membro da família consome, em média, 150 litros de água por dia. A família de José tem 4 pessoas. Qual será o consumo total de água da família em um mês de 30 dias?

- A) 12 000 litros
- B) 15 000 litros
- C) 18 000 litros
- D) 20 000 litros
- E) 24 000 litros

ATIVIDADE 3

Lucas está misturando tinta branca e azul para pintar uma parede de tom azul claro. A receita da tinta exige uma proporção de 4 partes de tinta branca para cada 1 parte de tinta azul. Ele precisa preparar um total de 10 litros de tinta para o trabalho. Quantos litros de tinta branca Lucas deve misturar para obter a quantidade total de tinta desejada?

- A) 6 litros de tinta branca
- B) 7 litros de tinta branca
- C) 8 litros de tinta branca
- D) 9 litros de tinta branca
- E) 10 litros de tinta branca

ATIVIDADE 4

Uma mangueira enche uma piscina em 10 horas. Se mais duas mangueiras idênticas forem adicionadas, em quanto tempo a piscina será completamente cheia?

- A) 3 horas e 20 minutos
- B) 5 horas
- C) 6 horas e 40 minutos
- D) 10 horas
- E) 12 horas

ATIVIDADE 5

Ana tem uma determinada quantidade de doces que ela quer distribuir igualmente entre seus amigos. Se ela tiver 15 amigos, cada um receberá 8 doces. Se, em vez disso, ela tiver 10 amigos, quantos doces cada amigo receberá?

- A) 10 doces
- B) 12 doces
- C) 15 doces
- D) 16 doces
- E) 18 doces

ATIVIDADE 6

Um médico prescreveu um remédio para um paciente com uma dosagem diária de 5 miligramas (mg) por quilograma (kg) de peso corporal. O paciente pesa 70 kg. A dosagem diária total é dividida em duas doses iguais, uma de manhã e outra à noite. Quantos miligramas (mg) de remédio o paciente deve tomar em cada dose?

- A) 100 mg
- B) 125 mg
- C) 150 mg
- D) 175 mg
- E) 200 mg

Alividade /

Em uma fábrica, há 5 máquinas que produzem 4 920 peças diárias. Em um determinado dia, 2 máquinas ficaram paradas para manutenção. Sabendo que não há diferença na quantidade de peças produzidas entre as máquinas, o número de peças produzidas nesse dia foi de:

- A) 984
- B) 1 962
- C) 2 952
- D) 2 925
- E) 3 936

ATIVIDADE 8

Em um açougue, um cliente pede R\$ 70,00 de um determinado tipo de carne. Sabendo que 1 kg dessa carne custa R\$ 46,00, a quantidade de carne que esse cliente vai levar é, aproximadamente:

- A) 1,3 kg
- B) 1,4 kg
- C) 1,5 kg
- D) 1,6 kg
- E) 1,7 Kg

canva

ATIVIDADE 9

Fernanda está monitorando o consumo da bateria do seu celular. O celular dela tem uma bateria de 4 500 mAh (miliampere-hora). Ao usar o celular para navegar na internet, ele consome 500 mAh por hora. Quantas horas de navegação Fernanda pode realizar antes de a bateria acabar?

- A) 6 horas
- B) 7 horas
- C) 8 horas
- D) 9 horas
- E) 10 horas

ATIVIDADE 10

Na tabela abaixo, vemos o volume de água despejada em um recipiente com a forma de um cilindro reto e a respectiva altura que a água atingiu. Quantos litros de água cabem nesse recipiente, sabendo que sua altura é de 20 cm?

- A) 8 litros
- B) 9 litros
- C) 10 litros
- D) 11 litros
- E) 12 litros

Altura (Em cm)	Volume de água (Em litros)	
2,5	1	
5	2	
7,5	3	
12,5	5	

Referências

BONJORNO, Giovanni Jr.; CÂMARA, Paulo. Prisma: matemática – conjuntos e funções . São Paulo: FTD, 2020.

DANTE, Luiz Roberto. Telaris – Matemática: 9º ano . 3.ed. São Paulo: Editora Ática, 2018.

DANTE, Luiz Roberto; VIANA, Fernando. Matemática em contextos . Volume 1. São Paulo: Ática, 2020

KHAN ACADEMY. Introdução às razões (ratios). Khan Academy, [s.d.]. Disponível em: https://pt.khanacademy.org/math/pma-pr-resolucao-problemas-n2/x7104d146bf24fa30:unidade-2-2024/x7104d146bf24fa30:2014-regra-de-tres-simples/v/ratios-intro. Acesso em: 6 dez. 2024.

KHAN ACADEMY. Proporção. Khan Academy, [s.d.]. Disponível em: https://pt.khanacademy.org/math/pt-mat-prep-em-todo conteudo/xc940e6c2768299b1:proporcao. Acesso em: 6 dez. 2024.

PORTAL DA OBMEP. Resolvendo exercícios de matemática: Inequações. 2024. Disponível em: https://www.youtube.com/watch?v=kv QhjPVi4o. Acesso em: 6 dez. 2024.

PROF. WARLES. Blog do Prof. Warles. Disponível em: https://profwarles.blogspot.com/. Acesso em: 6 dez. 2024.